skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 10, 2026

Title: Dynamics and Mechanism of Off‐ to On‐Switching in Dreiklang a Decoupled Reversibly Switchable Fluorescent Protein
Abstract Dreiklang is a reversibly switchable (rs) fluorescent protein (FP) with a unique off‐state, a UV absorbing hydrated form of the typical FP chromophore. Here we report ultrafast dynamics of the off‐ to on‐state transition in Dreiklang using complementary ultrafast optical and vibrational transient absorption to resolve chromophore driven protein structural dynamics. This approach allows observation of the real‐time response in a protein to bond breaking and forming events. The excited electronic state decays in a nonsingle exponential fashion in tens to hundreds of picoseconds, undergoing photodehydration with a yield of several per‐cent. The primary photoproduct formed is identified as the cis protonated form of the FP chromophore, initially in a perturbed H‐bonded environment. This primary product relaxes on a few microseconds timescale by a mechanism involving changes to a glutamic acid residue and modifications of the amide backbone, possibly involving a carbonyl to imine tautomerization. The temporal and spectral resolution of Dreiklang's photodehydration provides data against which to test quantum chemical calculations of reaction dynamics in proteins and suggests a route to modifying and potentially enhancing its photoswitching properties.  more » « less
Award ID(s):
1817837
PAR ID:
10650498
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-VCH
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoconvertible fluorescent proteins (pcFPs) have enabled exquisite images of cellular structures due to their genetic encodability and red-shifted emission with high brightness, hence receiving increased traction in the field. However, the red form of Kaede-like pcFPs after photoconversion remains underexplored. We implemented ultrafast electronic and vibrational spectroscopies on the red Kaede chromophore in solution vs the protein pocket of the least-evolved ancestor (LEA, a Kaede-like green-to-red pcFP) to gain crucial insights into the photophysical processes of the chromophore. The measured fluorescence quantum yield (FQY) values were correlated with ultrafast dynamics to reveal that hydrogen-bonding interactions with the solvent can quench the excited-state Kaede in solution. A viscosity-dependent sub-ps decay indicates nonradiative relaxation involving swift chromophore conformational motions. Femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) reveal an additional ∼1 ps decay of the photoconverted red form of LEA that is absent in green LEA before photoconversion. Transient structural dynamics from FSRS elucidate this decay to involve the phenolate and imidazolinone ring twists that are implicated during cis → trans isomerization and on → off photoswitching in phototransformable fluorescent proteins (FPs). Compared to green-emitting species, the FQY of red LEA (∼0.58) and many other red FPs are often reduced, limiting their applications in modern bioimaging techniques. By shining more light on the often overlooked photoconverted form of pcFPs with ultrafast spectroscopies, we envision such essential mechanistic insights to enable a bottom-up approach for rationally improving the brightness of red-emitting LEA and many other controllable bioprobes, including FPs. 
    more » « less
  2. null (Ed.)
    Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl − ). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl − sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore p K a and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl − but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity. 
    more » « less
  3. Abstract Understanding the structure‐function relationships of the green fluorescent protein (GFP) chromophore is important in rationally developing new molecular tools for biological imaging and beyond. Herein, we systematically modified the GFP chromophore structure with electron‐withdrawing and ‐donating groups (EWGs and EDGs) to investigate the substituent effects on the excited‐state proton transfer (ESPT) and twisting dynamics of the cationic chromophore in solution. With key insights gained from femtosecond transient absorption and stimulated Raman spectroscopy, we reveal that the EWG substitution by –F increases photoacidity in an additive manner and leads to an ultrafast barrierless ESPT by difluorination, while the EDG substitution by –OCH3also results in ultrafast ESPT despite the weak photoacidity as estimated by the Förster equation. We ascribe the unusually fast kinetics in methoxylated derivatives to the occurrence of a pre‐existing chromophore‐solvent complex that sets up the acceptor site for ESPT. Furthermore, the kinetic competition between ESPT and twisting pathways is crucial for the observation of ESPT in action, particularly for molecules undergoing efficient nonradiative decay in the excited state through torsional motions. Such flexible and highly engineerable molecules can enable more versatile photoswitches and sensors. 
    more » « less
  4. null (Ed.)
    Ratiometric indicators with long emission wavelengths are highly preferred in modern bioimaging and life sciences. Herein, we elucidated the working mechanism of a standalone red fluorescent protein (FP)-based Ca2+ biosensor, REX-GECO1, using a series of spectroscopic and computational methods. Upon 480 nm photoexcitation, the Ca2+-free biosensor chromophore becomes trapped in an excited dark state. Binding with Ca2+ switches the route to ultrafast excited-state proton transfer through a short hydrogen bond to an adjacent Glu80 residue, which is key for the biosensor’s functionality. Inspired by the 2D-fluorescence map, REX-GECO1 for Ca2+ imaging in the ionomycin-treated human HeLa cells was achieved for the first time with a red/green emission ratio change (ΔR/R0) of ~300%, outperforming many FRET- and single FP-based indicators. These spectroscopy-driven discoveries enable targeted design for the next-generation biosensors with larger dynamic range and longer emission wavelengths. 
    more » « less
  5. Abstract Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next‐generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady‐state and time‐resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinentcis‐transisomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited‐state proton transfer in various LSSRFPs showcases the resolving power of wavelength‐tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red‐emitting species. Moreover, recent progress in noncanonical RFPs with a site‐specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health. 
    more » « less