Earth’s penultimate icehouse (ca. 340–285 Ma) was a time of low atmospheric pCO2 and high pO2, formation of the supercontinent Pangaea, dynamic glaciation in the Southern Hemisphere, and radiation of the oldest tropical rainforests. Although it has been long appreciated that these major tectonic, climatic, and biotic events left their signature on seawater 87Sr/86Sr through their influence on Sr fluxes to the ocean, the temporal resolution and precision of the late Paleozoic seawater 87Sr/86Sr record remain relatively low. Here we present a high-temporal-resolution and high-fidelity record of Carboniferous– early Permian seawater 87Sr/86Sr based on conodont bioapatite from an open-water carbonate slope succession in south China. The new data define a rate of long-term rise in 87Sr/86Sr (0.000035/m.y.) from ca. 334–318 Ma comparable to that of the middle to late Cenozoic. The onset of the rapid decline in 87Sr/86Sr (0.000043/m.y.), following a prolonged plateau (318–303 Ma), is constrained to ca. 303 Ma. A major decoupling of 87Sr/86Sr and pCO2 during 303–297 Ma, coincident with the Paleozoic peak in pO2, widespread low-latitude aridification, and demise of the pan-tropical wetland forests, suggests a major shift in the dominant influence on pCO2 from continental weathering and organic carbon sequestration (as coals) on land to organic carbon burial in the ocean.
more »
« less
This content will become publicly available on June 24, 2026
Mantle-like Sr isotopes in a Sturtian cap carbonate in Oman
Abstract Twice in the Cryogenian Period (720–635 Ma), during the Sturtian and Marinoan glaciations, ice sheets extended to equatorial latitudes for millions of years. These climate extremes have been interpreted to record the Snowball climate state, in which all of Earth’s oceans were covered with ice. During a Snowball Earth, the hydrological cycle would have been curtailed and silicate weathering greatly reduced. In this scenario, deep ocean chemistry should have evolved toward mantle values through hydrothermal exchange at mid-ocean ridges. Specifically, seawater strontium isotopes (87Sr/86Sr) are predicted to exhibit unradiogenic mantle-like values. However, cap carbonates that overlie the Cryogenian glacial deposits have yielded radiogenic 87Sr/86Sr values similar to those of seawater prior to glaciation, inconsistent with the central geochemical prediction of the Snowball Earth hypothesis. Here we report the discovery of 87Sr/86Sr values of 0.7034 in marine carbonate and authigenic barite that rest directly above Sturtian glacial deposits in Dhofar, Oman. These values record either a local unradiogenic source or Snowball Earth deep-water values that have not been previously identified. If it is a global signal, these new data and geochemical modeling support an extreme Snowball Earth scenario with near-complete ice cover and define one of the largest geochemical perturbations to seawater in Earth history.
more »
« less
- PAR ID:
- 10650512
- Publisher / Repository:
- Geology
- Date Published:
- Journal Name:
- Geology
- Volume:
- 53
- Issue:
- 9
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 753 to 756
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jacobson, A. (Ed.)Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by 1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered.more » « less
-
Jacobson, A. (Ed.)Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by 1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered.more » « less
-
The geochemistry of phosphate rocks can provide valuable information on their depositional environment and the redox condition of global oceans through time. Here we examine trace metal concentrations and uranium (δ238U, δ234U) and strontium (87Sr/86Sr) isotope variations of marine sedimentary phosphate rocks and the phosphate-bearing carbonate fluorapatite (CFA) mineral phase, originating from Precambrian to mid-Miocene aged major global phosphate deposits. We find elevated concentrations of several trace elements (Al, V, Cr, Cd, U, Mn, Co, Cu, As, and Rb) in the CFA mineral phase of young phosphate rocks (Miocene to Late Cretaceous) relative to those of older (Devonian to Precambrian) rocks. The δ238U of phosphate rocks of Mid-Miocene to Permian age range from −0.311‰ to 0.070‰, exhibiting a positive fractionation relative to modern seawater (−0.38‰). This is similar to the isotope fractionation reported for carbonate and shale sediments, likely resulting from the reduction of uranium in porewaters during CFA precipitation. Cambrian to Precambrian phosphate rocks have lower δ238U of −0.583‰ to −0.363‰, indicating different depositional redox conditions likely resulting from seafloor anoxia and/or diagenetic modification. The 87Sr/86Sr ratios of phosphate rocks of Cretaceous to Mid-Miocene age generally follow the secular 87Sr/86Sr seawater curve. Phosphate rocks with 87Sr/86Sr that deviate from this curve have characteristic trace metal trends, such as lower Sr/Ca and Sr concentrations, suggesting later diagenetic modification. Older phosphate rocks of Precambrian age are systematically more radiogenic than the expected secular Sr seawater composition at the time of deposition, possibly due to the greater influence of terrestrial input in peritidal zones and/or more pervasive diagenetic modification. Overall, our study reveals connections between U and Sr isotope variations for reconstructing the depositional and diagenetic conditions of global phosphate rock formation through Earth history and the transition to an oxic ocean following the Paleozoic Oxygenation Event.more » « less
-
The hydrogen isotope value (δD) of water indigenous to the mantle is masked by the early degassing and recycling of surface water through Earth's history. High 3He/4He ratios in some ocean island basalts, however, provide a clear geochemical signature of deep, primordial mantle that has been isolated within the Earth's interior from melting, degassing, and convective mixing with the upper mantle. Hydrogen isotopes were measured in high 3He/4He submarine basalt glasses from the Southeast Indian Ridge (SEIR) at the Amsterdam–St. Paul (ASP) Plateau (δD = −51 to −90‰, 3He/4He = 7.6 to 14.1 RA) and in submarine glasses from Loihi seamount south of the island of Hawaii (δD = −70 to −90‰, 3He/4He = 22.5 to 27.8 RA). These results highlight two contrasting patterns of δD for high 3He/4He lavas: one trend toward high δD of approximately −50‰, and another converging at δD = −75‰. These same patterns are evident in a global compilation of previously reported δD and 3He/4He results. We suggest that the high δD values result from water recycled during subduction that is carried into the source region of mantle plumes at the core–mantle boundary where it is mixed with primordial mantle, resulting in high δD and moderately high 3He/4He. Conversely, lower δD values of −75‰, in basalts from Loihi seamount and also trace element depleted mid-ocean ridge basalts, imply a primordial Earth hydrogen isotopic value of −75‰ or lower. δD values down to −100‰ also occur in the most trace element-depleted mid-ocean ridge basalts, typically in association with 87Sr/86Sr ratios near 0.703. These lower δD values may be a result of multi-stage melting history of the upper mantle where minor D/H fractionation could be associated with hydrogen retention in nominally anhydrous residual minerals. Collectively, the predominance of δD around −75‰ in the majority of mid-ocean ridge basalts and in high 3He/4He Loihi basalts is consistent with an origin of water on Earth that was dominated by accretion of chondritic material.more » « less
An official website of the United States government
