skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2026

Title: Coherent Structures in Active Flows on Dynamic Surfaces
Abstract Coherent structures—flow features that organize material transport and deformation—are central to analyzing complex flows in fluids, plasmas, and active matter. Yet, identifying such structures on dynamic surfaces remains an open challenge, limiting their application to many living and synthetic systems. Here, we introduce a geometric framework to extract Lagrangian and Eulerian coherent structures from velocity data on arbitrarily shaped, time-evolving surfaces. Our method operates directly on triangulated meshes, avoiding global parametrizations while preserving objectivity and robustness to noise. Applying this framework to active nematic vesicles, collectively migrating epithelial spheroids, and beating zebrafish hearts, we uncover hidden transport barriers and Lagrangian deformation patterns—such as dynamic attractors, repellers, isotropic and anisotropic strain—missed by conventional Eulerian analyses. This approach offers a new perspective on soft and living matter, revealing how geometry and activity can be harnessed to program synthetic materials, and how Lagrangian strain and principal deformation directions can help uncover mechanosensitive processes and directional cues in morphogenesis.  more » « less
Award ID(s):
2443851 2413073
PAR ID:
10650548
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transport of material through the atmosphere is an issue with wide ranging implications for fields as diverse as agriculture, aviation, and human health. Due to the unsteady nature of the atmosphere, predicting how material will be transported via the Earth’s wind field is challenging. Lagrangian diagnostics, such as Lagrangian coherent structures (LCSs), have been used to discover the most significant regions of material collection or dispersion. However, Lagrangian diagnostics can be time-consuming to calculate and often rely on weather forecasts that may not be completely accurate. Recently, Eulerian diagnostics have been developed which can provide indications of LCS and have computational advantages over their Lagrangian counterparts. In this paper, a methodology is developed for estimating local Eulerian diagnostics from wind velocity data measured by a single fixed-wing unmanned aircraft system (UAS) flying in a circular arc. Using a simulation environment, driven by realistic atmospheric velocity data from the North American Mesoscale (NAM) model, it is shown that the Eulerian diagnostic estimates from UAS measurements approximate the true local Eulerian diagnostics and also predict the passage of LCSs. This methodology requires only a single flying UAS, making it easier and more affordable to implement in the field than existing alternatives, such as multiple UASs and Dopler LiDAR measurements. Our method is general enough to be applied to calculate the gradient of any scalar field. 
    more » « less
  2. Identifying atmospheric transport pathways is important to understand the effects of pollutants on weather, climate, and human health. The atmospheric wind field is variable in space and time and contains complex patterns due to turbulent mixing. In such a highly unsteady flow field, it can be challenging to predict material transport over a finite-time interval. Particle trajectories are often used to study how pollutants evolve in the atmosphere. Nevertheless, individual trajectories are sensitive to their initial conditions. Lagrangian Coherent Structures (LCSs) have been shown to form the template of fluid parcel motion in a fluid flow. LCSs can be characterized by special material surfaces that organize the parcel motion into ordered patterns. These key material surfaces form the core of fluid deformation patterns, such as saddle points, tangles, filaments, barriers, and pathways. Traditionally, the study of LCSs has looked at coherent structures derived from integrating the wind velocity field. It has been assumed that particles in the atmosphere will generally evolve with the wind. Recent work has begun to look at the motion of chemical species, such as water vapor, within atmospheric flows. By calculating the flux associated with each species, a new effective flux-based velocity field can be obtained for each species. This work analyzes generalized species-weighted coherent structures associated with various chemical species to find their patterns and pathways in the atmosphere, providing a new tool and language for the assessment of pollutant transport and patterns. 
    more » « less
  3. The dispersion of plant pathogens, such as rust spores, is responsible for more than 20% of global crop yield loss annually. However, the release mechanism of pathogens from flexible plant surfaces into the canopy is not well understood. In this study, we investigated the interplay between leaf elasticity and rainfall, revealing how a flexible leaf structure can generate a lateral flow stream, with embedded coherent structures that enhance transport. We first modeled the linear coupling between drop momentum, leaf vibration, and the stream flux from leaf surfaces. With Lagrangian diagnostics, we further mapped out the nested coherent structures around the fluttering profile, providing a dynamical description for local spore delivery. We hope the mechanistic details extracted here can facilitate the construction of physically informed analytical models for local crop disease management. 
    more » « less
  4. Abstract This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies. 
    more » « less
  5. High-speed, spatially-evolving turbulent boundary layers are of great importance across civilian and military applications. Furthermore, compressible boundary layers present additional challenges for energy and active scalar transport. Understanding transport phenomena is critical to efficient high-speed vehicle designs. Although at any instantaneous point in time a flow field may seem random, regions within the flow can exhibit coherency across space and time. These coherent structures play a key role in momentum and energy transport within the boundary layer. The two main categories for coherent structure identification are Eulerian and Lagrangian approaches. In this video, we focus on 4D (3D+Time) Lagrangian Coherent Structure (LCS), and the effect of wall curvature/temperature on these structures. We present the finite-time Lyapunov exponent (FTLE) for three wall thermal conditions (cooling, quasi-adiabatic and heating) for a concave wall curvature that builds on the experimental study by Donovan et al. (J. Fluid Mech., 259, 1-24, 1994). The flow is subject to a strong concave curvature (δ/R ~ -0.083, R is the curvature radius) followed by a very strong convex curvature (δ/R = 0.17). A GPU-accelerated particle simulation forms the basis for the 3-D FTLE where particles are advected over flow fields obtained via Direct Numerical Simulation (DNS) with high spatial/temporal resolution. We also show the cross-correlation between Q2 events (ejections) and the FTLE. The video is available at: https://gfm.aps.org/meetings/dfd-2022/63122e0e199e4c2da9a946a0 
    more » « less