skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the Modern Hydrological Balance of Bear Lake, Utah‐Idaho: Insights From Stable Isotopes (δ 18 O and δ 2 H)
Abstract Freshwater lakes are vital water resources, especially in the context of a changing climate. Supplementing existing hydrological methods to monitor lake levels may greatly improve resource management, particularly in drought‐prone regions. In this study, we performed dual‐isotope (δ18O and δ2H) calculations to model the hydrological balance of Bear Lake, Utah‐Idaho. The lake is a critical water resource and site for paleoclimate studies of the latest Pleistocene. Using the Craig‐Gordon isotopic mass balance model, we simultaneously constrained unknown fluxes, including groundwater discharge and particularly evaporation, which is typically under‐constrained due to inconsistencies across existing methods. Data from community databases and sampling campaigns in 2022 and 2023 were utilized to derive an evaporation rate of 2.18 × 108 m3/yr (±4.94 × 106 m3/yr, 1σ using δ18O; ±3.47 × 106 m3/yr, 1σ using δ2H) at a calculated relative humidity of 0.62 above the lake. Detailed analysis of the sensitivity of the model revealed that parameters related to atmospheric moisture, particularly humidity and its isotopic composition, significantly influence evaporation estimates. Using carbonate‐based isotope data, we leveraged this sensitivity to provide insights in the evaporation and humidity at Bear Lake during different time periods. This study shows the potential of using modern water isotopic composition to aid with interpreting carbonate‐based paleoclimate data sets and informing current and future water resource management practices.  more » « less
Award ID(s):
2102884 2102901
PAR ID:
10650764
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
AGU
Date Published:
Journal Name:
Water Resources Research
Volume:
61
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measurements of oxygen and hydrogen stable isotope ratios (δ18O and δD) in meteoric waters provide insight to overlapping effects of evaporation, precipitation, and mixing on basin scale hydrology. This study of waters collected between 2016 and 2021 in the Turkana Basin, northern Kenya, uses δ18O and δD to understand water balance in Lake Turkana, a large, low‐latitude, alkaline desert lake. The Omo River, a major river system in the Ethiopian Highlands, is historically understood to provide approximately 90% of the water input to Lake Turkana. Discharge of the Omo is prohibitively difficult to measure, but stable isotope ratios in the lake may provide a meaningful method for monitoring the lake's response to changes in input. Precipitation in the Turkana Basin is low (<200 mm/year) with negligible rainfall on the lake's surface, and all water loss from the lake is evaporative. We compare new measurements with previous data from the region and records of lake height and precipitation from the same time period. We show that a Bayesian approach to modeling evaporation using atmospheric conditions and river δ18O and δD yields results consistent with published water balance models. Continued sampling of lake and meteoric waters in the Turkana Basin will be a useful way to monitor the lake's response to regional and global climate change. 
    more » « less
  2. Abstract Tropical Pacific seawater and precipitation stable oxygen isotope data aid in understanding modern oceanic and atmospheric interactions, and these data are particularly valuable as they are archived in isotope‐based paleoclimate records. However, the absence of modern seawater isotope time series limits the ability to identify the atmospheric influences on these data, precluding robust paleoclimate interpretations. We present a new 10 year sub‐monthly record of seawater and precipitation stable oxygen isotope values (δ18Oswand δ18Op) from Koror, Palau. Our dataset indicates that temporally, δ18Oswis strongly influenced by local δ18Op.Both monthly δ18Oswand δ18Opare highly correlated with outgoing longwave radiation across the tropical Pacific, reflecting a Walker Circulation imprint on the surface ocean. Changes in the Palau δ18Osw—salinity relationship correspond to NINO3.4 variability, indicating a difference in how these variables record El Niño Southern Oscillation (ENSO) information, but demonstrating the utility of δ18Oswto reconstruct ENSO variability in the western tropical Pacific. 
    more » « less
  3. Abstract Historically, clumped isotope thermometry (T(∆47)) of soil carbonates has been interpreted to represent a warm‐season soil temperature based dominantly on coarse‐grained soils. Additionally, T(∆47) allows the calculation of the oxygen isotope composition of soil water (δ18Ow) in the past using the temperature‐dependent fractionation factor between soil water and pedogenic carbonate, but previous work has not measured δ18Owvalues with which to compare to these archives. Here, we present clumped isotope thermometry of modern soil carbonates from three soils in Colorado and Nebraska, USA, that have a fine‐to‐medium grain size, contain clay, and are representative of many carbonate‐bearing paleosols preserved in the rock record. At two of the three sites, Briggsdale, CO and Seibert, CO, T(∆47) overlaps with mean annual soil temperature (MAST), and the calculated δ18Owoverlaps within uncertainty with measured δ18Owat carbonate bearing depths. At the third site, in Oglala National Grassland, NE, mean T(∆47) is 8–11°C warmer than MAST, and the calculated δ18Owhas a significantly higher isotope value than any observations of δ18Ow. At all three sites, even in the fall season, δ18Owvalues at carbonate bearing depths overlap with spring rainfall δ18Ow, and there is little to no evaporative enrichment of δ2Hwand δ18Owvalues. These data challenge long‐held assumptions that all pedogenic carbonate records a warm‐season bias, and that δ18Owat carbonate‐bearing depths is affected by evaporative enrichment. 
    more » « less
  4. Abstract Global climate during the Holocene was relatively stable compared to the late Pleistocene. However, evidence from lacustrine records in South America suggests that tropical latitudes experienced significant water balance variability during the Holocene, rather than quiescence. For example, a tight coupling between insolation and carbonate δ18O records from central Andean lakes (e.g., Lakes Junín, Pumacocha) suggest water balance is tied directly to South American summer monsoon (SASM) strength. However, lake carbonate δ18O records also incorporate information about temperature and evaporation. To overcome this ambiguity, clumped and triple oxygen isotope records can provide independent constraints on temperature and evaporation. Here, we use clumped and triple oxygen isotopes to develop Holocene temperature and evaporation records from three central Andean lakes, Lakes Junín, Pumacocha, and Mehcocha, to build a more complete picture of regional water balance (P–E). We find that Holocene water temperatures at all three lakes were stable and slightly warmer than during the latest Pleistocene. These results are consistent with global data assimilations and records from the foothills and Amazon basin. In contrast, evaporation was highly variable and tracks SASM intensity. The hydrologic response of each lake to SASM depends greatly on the physical characteristics of the lake basin, but they all record peak evaporation in the early to mid‐Holocene (11,700 to 4,200 years BP) when regional insolation was relatively low and the SASM was weak. These results corroborate other central Andean records and suggest synchronous, widespread water stress tracks insolation‐paced variability in SASM strength. 
    more » « less
  5. Abstract Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets. 
    more » « less