The Computer Science Teachers Association (CSTA) K-12 Computer Science Standards identify ‘Algorithms and Programming’ as a key CS concept across all grade bands that encompasses sub-concepts such as algorithms, decomposition, variables, and control structures. Previous studies have shown that algorithms and programming concepts often pose challenges for novice programmers, and that instruction in these areas is often superficial. We developed formative assessment tasks to investigate middle school students’ understanding of four CS standards related to algorithms and programming and collected responses from over 100 students associated with five different teachers. We found that students demonstrated a limited understanding of the standards. These findings contribute to the growing literature on middle school students’ understanding of algorithms and programming, and provide insights that can inform CS teacher development, instruction, and curriculum design.
more »
« less
This content will become publicly available on July 26, 2026
LearnLens: An AI-Enhanced Dashboard to Support Teachers in Open-Ended Classrooms
Exploratory learning environments (ELEs), such as simulation-based platforms and open-ended science curricula, promote hands-on exploration and problem-solving but make it difficult for teachers to gain timely insights into students' conceptual understanding. This paper presents LearnLens, a generative AI (GenAI)-enhanced teacher-facing dashboard designed to support problem-based instruction in middle school science. LearnLens processes students' open-ended responses from digital assessments to provide various insights, including sample responses, word clouds, bar charts, and AI-generated summaries. These features elucidate students' thinking, enabling teachers to adjust their instruction based on emerging patterns of understanding. The dashboard was informed by teacher input during professional development sessions and implemented within a middle school Earth science curriculum. We report insights from teacher interviews that highlight the dashboard's usability and potential to guide teachers' instruction in the classroom.
more »
« less
- Award ID(s):
- 2327708
- PAR ID:
- 10650779
- Editor(s):
- Mavrikis, M; Lalle, S; Azevedo, R; Biswas, G; Roll, I
- Publisher / Repository:
- Workshop on Advances in Artificial Intelligence for Exploratory Learning (AI4EXL) (https://transeet.eu/ai4exl/)
- Date Published:
- Subject(s) / Keyword(s):
- GenAI Teacher-facing Dashboard Open-Ended Learning Environment LLM AI in Education Science Education
- Format(s):
- Medium: X
- Location:
- https://arxiv.org/abs/2509.10582
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The "Computer Science for All" initiative advocates for universal access to computer science (CS) instruction. A key strategy toward this end has been to establish CS content standards outlining what all students should have the opportunity to learn. Standards can support curriculum quality and access to quality CS instruction, but only if they are used to inform curriculum design and instructional practice. Professional learning offered to teachers of CS has typically focused on learning to implement a specific curriculum, rather than deepening understanding of CS concepts. We set out to develop a set of educative resources, formative assessment tools and teacher professional development (PD) sessions to support middle school CS teachers' knowledge of CS standards and standards-aligned formative assessment literacy. Our PD and associated resources focus on five CS standards in the Algorithm and Programming strand and are meant to support teachers using any CS curriculum or programming language. In this experience report, we share what we learned from implementing our standards-based PD with four middle school CS teachers. Teachers initially perceived standards as irrelevant to their teaching but they came to appreciate how a deeper understanding of CS concepts could enhance their instructional practice. Analysis of PD observations and exit surveys, teacher interviews, and teacher responses to a survey assessing CS pedagogical content knowledge demonstrated the complexity of using content standards as a driver of high-quality CS instruction at the middle school level, and reinforced our position that more standards-focused PD is needed.more » « less
-
In the face of the rising prevalence of artificial intelligence (AI) in daily life, there is a need to integrate lessons on AI literacy into K12 settings to equitably engage young adolescents in critical and ethical thinking about AI technologies. This exploratory study reports findings from a teacher professional development project designed to advance teacher AI literacy in preparation for teaching an AI curriculum in their inclusive middle school classrooms. Analysis compares the learning experiences of 30 participating teachers (including Computer Science, Science, Math, English, and Social Studies teachers). Results suggest Science teachers’ understanding of AI concepts, particularly logic structures, is on average higher than their non-Science teacher counterparts. Teacher interviews reveal several thematic differences in Science teachers’ learning from the AI PD as compared to their counterparts, namely learning from reflective discourse with diverse groups. Findings offer insights on the depth and quality of Science teacher AI literacy after participating in an AI teacher PD, with implications for future research in the integration of AI education into Science teachers’ inclusive K12 classrooms.more » « less
-
In the face of the rising prevalence of artificial intelligence (AI) in daily life, there is a need to integrate lessons on AI literacy into K12 settings to equitably engage young adolescents in critical and ethical thinking about AI technologies. This exploratory study reports findings from a teacher professional development project designed to advance teacher AI literacy in preparation for teaching an AI curriculum in their inclusive middle school classrooms. Analysis compares the learning experiences of 30 participating teachers (including Computer Science, Science, Math, English, and Social Studies teachers). Results suggest Science teachers’ understanding of AI concepts, particularly logic structures, is on average higher than their non-Science teacher counterparts. Teacher interviews reveal several thematic differences in Science teachers’ learning from the AI PD as compared to their counterparts, namely learning from reflective discourse with diverse groups. Findings offer insights on the depth and quality of Science teacher AI literacy after participating in an AI teacher PD, with implications for future research in the integration of AI education into Science teachers’ inclusive K12 classrooms.more » « less
-
Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies.more » « less
An official website of the United States government
