Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.
more »
« less
This content will become publicly available on November 5, 2026
Interchromosomal Linkage Disequilibrium Analysis Reveals Strong Indications of Sign Epistasis in Wheat Breeding Families
Abstract Additive gene action is assumed to underly quantitative traits, but the eventual poor performance of elite wheat lines as parents suggests that epistasis could be the underlying genetic architecture. Sign epistasis is characterized by alleles having either a beneficial or detrimental effect depending on the genetic background, which can result in elite lines that fail as parents in certain parental combinations. Hence, the objective of this study were to test the existence of sign epistasis and examine its consequences to wheat breeding. The presence of sign epistasis is expected to distort the allele frequency distribution between two interacting genes compared to neutral sites, creating strong linkage disequilibrium (LD). To test this hypothesis, analysis of interchromosomal LD in breeding families was performed and detected 19 regions in strong disequilibrium, whose allele frequency distribution matched the sign epistasis prediction and falsified the competing hypothesis of additive selection. To validate these candidate interactions while avoiding the biases of a circular analysis and the confounding effects of genetic drift, two independent sets of populations were analyzed. Genetic drift was attributed to creating the sign epistasis patterns observed in eleven interactions, but there was not sufficient evidence to reject the sign epistasis hypothesis in eight interactions. Sign epistasis may explain the poor performance of elite lines as parents, as crossing lines with complementary allelic combination re-establishes epistatic variance in the offspring. Reduction in the effective population size in certain crosses may also occur when unfavorable sign epistatic combinations are deleterious. The potential existence of di-genic and higher order epistatic interactions in elite germplasm can tremendously impact breeding strategies as managing epistasis becomes imperative for success.
more »
« less
- Award ID(s):
- 2421208
- PAR ID:
- 10650825
- Editor(s):
- Ingvarsson, Pär
- Publisher / Repository:
- G3
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here. A total of eight populations were developed by crossing mutant lines in different combinations into GA230 (GA2004230) background. Multiple lines in each population were significantly improved for the fiber trait that distinguished the donor parent(s), demonstrating that an elite breeding line (GA230) could be improved for fiber qualities using the mutant lines. Genotypes improved for multiple fiber traits of interest suggesting that allele pyramiding is possible. Compared to midparent values, individual progeny in the population conferred fiber quality improvements of as much as 31.7% (in population O) for micronaire (MIC), 16.1% (in population P) for length, 22.4% (in population K) for strength, 4.1% (in population Q) for uniformity, 45.8% (in population N) for elongation, and 13.9% (in population O) for lint percentage (lint%). While further testing for stability of the phenotype and estimation of yield potential is necessary, mutation breeding shows promise as an approach to reduce the problem of the genetic bottleneck of upland cotton. The populations developed here may also contribute to identifying candidate genes and causal mutations for fiber quality improvement.more » « less
-
enetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mitonuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high and low fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, non-additive ways in certain environmental conditions. Mito-mito epistasis (i.e. non-additive interactions between mitochondrial loci) influenced fitness in progeny from 4 different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities.more » « less
-
Abstract Dihaploid production from elite tetraploid cultivars is key to both traditional and novel breeding approaches that seek to simplify potato genetics. For this purpose, efficient and widely compatible haploid inducers (HIs) are needed. We compared PL-4, a new HI developed at the International Potato Center, to known HIs IvP101 and IvP35. By pollination of elite tetraploid breeding lines, we showed that PL-4 performed significantly better and had a homogeneous response regardless of the genetic background of the pistillate parents, on the most important efficiency traits—number of dihaploids per 100 fruits and haploid induction rate. Moreover, PL-4 exhibited a reduced proportion of hybrid seeds, a convenient trait for efficient screening. In this context, we recommend PL-4 as an enhanced HI for the potato breeding community.more » « less
-
Abstract Male colour patterns of the Trinidadian guppy ( Poecilia reticulata ) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a ‘supergene’ on the sex chromosome. Here, we phenotype and genotype four guppy ‘Iso-Y lines’, where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis.more » « less
An official website of the United States government
