skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jointly invariant measures for the Kardar–Parisi–Zhang equation
We give an explicit description of a family of jointly invariant measures of the KPZ equation singled out by asymptotic slope conditions. These are couplings of Brownian motions with drift, and can be extended to a cadlag process indexed by all real drift parameters. We name this process the KPZ horizon (KPZH). As a corollary, we resolve a recent conjecture by showing the existence of a random, countably infinite dense set of drift values at which the Busemann process of the KPZ equation is discontinuous. This signals instability, and shows the failure of the one force–one solution principle and the existence of at least two extremal semi-infinite polymer measures in the exceptional directions. The low-temperature limit of the KPZH is the stationary horizon (SH), the unique jointly invariant measure of the KPZ fixed point under the same slope conditions. The high-temperature limit of the KPZH is a coupling of Brownian motions that differ by linear shifts, which is jointly invariant under the Edwards–Wilkinson fixed point.  more » « less
Award ID(s):
1811090 2054630
PAR ID:
10651177
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer-Verlag
Date Published:
Journal Name:
Probability Theory and Related Fields
Volume:
192
Issue:
1-2
ISSN:
0178-8051
Page Range / eLocation ID:
303 to 372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze the high moments of the Stochastic Heat Equation (SHE) via a transformation to the attractive Brownian Particles (BPs), which are Brownian motions interacting via pairwise attractive drift. In those scaling regimes where the particles tend to cluster, we prove a Large Deviation Principle (LDP) for the empirical measure of the attractive BPs. Under the delta(-like) initial condition, we characterize the unique minimizer of the rate function and relate the minimizer to the spacetime limit shapes of the Kardar–Parisi–Zhang (KPZ) equation in the upper tails. The results of this paper are used in the companion paper [75] to prove an n-point, upper-tail LDP for the KPZ equation and to characterize the corresponding spacetime limit shape. 
    more » « less
  2. Abstract This paper studies the large scale limits of multi-type invariant distributions and Busemann functions of planar stochastic growth models in the Kardar–Parisi–Zhang (KPZ) class. We identify a set of sufficient hypotheses for convergence of multi-type invariant measures of last-passage percolation (LPP) models to the stationary horizon (SH), which is the unique multi-type stationary measure of the KPZ fixed point. Our limit theorem utilizes conditions that are expected to hold broadly in the KPZ class, including convergence of the scaled last-passage process to the directed landscape. We verify these conditions for the six exactly solvable models whose scaled bulk versions converge to the directed landscape, as shown by Dauvergne and Virág. We also present a second, more general, convergence theorem with future applications to polymer models and particle systems. Our paper is the first to show convergence to the SH without relying on information about the structure of the multi-type invariant measures of the prelimit models. These results are consistent with the conjecture that the SH is the universal scaling limit of multi-type invariant measures in the KPZ class. 
    more » « less
  3. Abstract We study the Kardar–Parisi–Zhang (KPZ) equation on the half-line x ⩾ 0 with Neumann type boundary condition. Stationary measures of the KPZ dynamics were characterized in recent work: they depend on two parameters, the boundary parameter u of the dynamics, and the drift − v of the initial condition at infinity. We consider the fluctuations of the height field when the initial condition is given by one of these stationary processes. At large time t , it is natural to rescale parameters as ( u , v ) = t −1/3 ( a , b ) to study the critical region. In the special case a + b = 0, treated in previous works, the stationary process is simply Brownian. However, these Brownian stationary measures are particularly relevant in the bound phase ( a < 0) but not in the unbound phase. For instance, starting from the flat or droplet initial condition, the height field near the boundary converges to the stationary process with a > 0 and b = 0, which is not Brownian. For a + b ⩾ 0, we determine exactly the large time distribution F a , b stat of the height function h (0, t ). As an application, we obtain the exact covariance of the height field in a half-line at two times 1 ≪ t 1 ≪ t 2 starting from stationary initial condition, as well as estimates, when starting from droplet initial condition, in the limit t 1 / t 2 → 1. 
    more » « less
  4. In this paper, we consider the KPZ equation under the weak noise scaling. That is, we introduce a small parameter \sqrt{\varepsilon} in front of the noise and let \varepsilon \to 0. We prove that the one-point large deviation rate function has a \frac{3}{2} power law in the deep upper tail. Furthermore, by forcing the value of the KPZ equation at a point to be very large, we prove a limit shape of the KPZ equation as \varepsilon \to 0. This confirms the physics prediction in Kolokolov and Korshunov (2007), Kolokolov and Korshunov (2009), Meerson, Katzav, and Vilenkin (2016), Kamenev, Meerson, and Sasorov (2016), and Le Doussal, Majumdar, Rosso, and Schehr (2016). 
    more » « less
  5. Abstract We provide the first construction of stationary measures for the open KPZ equation on the spatial interval [0,1] with general inhomogeneous Neumann boundary conditions at 0 and 1 depending on real parametersuandv, respectively. When , we uniquely characterize the constructed stationary measures through their multipoint Laplace transform, which we prove is given in terms of a stochastic process that we call the continuous dual Hahn process. Our work relies on asymptotic analysis of Bryc and Wesołowski's Askey–Wilson process formulas for the open ASEP stationary measure (which in turn arise from Uchiyama, Sasamoto and Wadati's Askey‐Wilson Jacobi matrix representation of Derrida et al.'s matrix product ansatz) in conjunction with Corwin and Shen's proof that open ASEP converges to open KPZ under weakly asymmetric scaling. 
    more » « less