We consider the n-point, fixed-time large deviations of the KPZ equation with the narrow wedge initial condition. The scope consists of concave-configured, upper-tail deviations and a wide range of scaling regimes that allows time to be short, unit-order, and long. We prove the n-point large deviation principle and characterize, with proof, the corresponding spacetime limit shape. Our proof is based on the results—from the companion paper (Tsai in High moments of the SHE in the clustering regimes, 2023)—on moments of the stochastic heat equation and utilizes ideas coming from a tree decomposition. Behind our proof lies the phenomenon where the major contribution of the noise concentrates around certain corridors in spacetime, and we explicitly describe the corridors.
more »
« less
High moments of the SHE in the clustering regimes
We analyze the high moments of the Stochastic Heat Equation (SHE) via a transformation to the attractive Brownian Particles (BPs), which are Brownian motions interacting via pairwise attractive drift. In those scaling regimes where the particles tend to cluster, we prove a Large Deviation Principle (LDP) for the empirical measure of the attractive BPs. Under the delta(-like) initial condition, we characterize the unique minimizer of the rate function and relate the minimizer to the spacetime limit shapes of the Kardar–Parisi–Zhang (KPZ) equation in the upper tails. The results of this paper are used in the companion paper [75] to prove an n-point, upper-tail LDP for the KPZ equation and to characterize the corresponding spacetime limit shape.
more »
« less
- Award ID(s):
- 2243112
- PAR ID:
- 10607854
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Functional Analysis
- Volume:
- 288
- Issue:
- 1
- ISSN:
- 0022-1236
- Page Range / eLocation ID:
- 110675
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the variational problem associated with the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation (SHE). For a general class of initial-terminal conditions, we show that a minimizer of this variational problem exists, and any minimizer solves a system of imaginary-time Nonlinear Schrödinger equations. This system is integrable. Utilizing the integrability, we prove that the formulas from the physics work (see Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]) hold for every minimizer of the variational problem. As an application, we consider the Freidlin–Wentzell LDP for the SHE with the delta initial condition. Under a technical assumption on the poles of the reflection coefficients, we prove the explicit expression for the one-point rate function that was predicted in the physics works (see Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Grégory Schehr [Phys. Rev. Lett. 117 (2016), p. 070403]; Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]). Under the same assumption, we give detailed pointwise estimates of the most probable shape in the upper-tail limit.more » « less
-
In this paper, we consider the KPZ equation under the weak noise scaling. That is, we introduce a small parameter \sqrt{\varepsilon} in front of the noise and let \varepsilon \to 0. We prove that the one-point large deviation rate function has a \frac{3}{2} power law in the deep upper tail. Furthermore, by forcing the value of the KPZ equation at a point to be very large, we prove a limit shape of the KPZ equation as \varepsilon \to 0. This confirms the physics prediction in Kolokolov and Korshunov (2007), Kolokolov and Korshunov (2009), Meerson, Katzav, and Vilenkin (2016), Kamenev, Meerson, and Sasorov (2016), and Le Doussal, Majumdar, Rosso, and Schehr (2016).more » « less
-
We give an explicit description of a family of jointly invariant measures of the KPZ equation singled out by asymptotic slope conditions. These are couplings of Brownian motions with drift, and can be extended to a cadlag process indexed by all real drift parameters. We name this process the KPZ horizon (KPZH). As a corollary, we resolve a recent conjecture by showing the existence of a random, countably infinite dense set of drift values at which the Busemann process of the KPZ equation is discontinuous. This signals instability, and shows the failure of the one force–one solution principle and the existence of at least two extremal semi-infinite polymer measures in the exceptional directions. The low-temperature limit of the KPZH is the stationary horizon (SH), the unique jointly invariant measure of the KPZ fixed point under the same slope conditions. The high-temperature limit of the KPZH is a coupling of Brownian motions that differ by linear shifts, which is jointly invariant under the Edwards–Wilkinson fixed point.more » « less
-
We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter ε√ to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a 52 law for the deep lower tail. These power laws confirm existing physics predictions (Kolokolov and Korshunov in Phys Rev B 75(14):140201, 2007, Phys Rev E 80(3):031107, 2009; Meerson et al. in Phys Rev Lett 116(7):070601, 2016; Le Doussal et al. in Phys Rev Lett 117(7):070403, 2016; Kamenev et al. in Phys Rev E 94(3):032108, 2016).more » « less
An official website of the United States government

