Abstract A thin solid electrolyte with a high Li+conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg2+stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li1.2Mg0.1Zr1.9(PO4)3(LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr2(PO4)3.7Li and6Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO4cell. The enhanced performance of these cells enabled by the Li1.2Mg0.1Zr1.9(PO4)3solid electrolyte is stable upon repeated charge/discharge cycling.
more »
« less
This content will become publicly available on November 20, 2026
Critical Role of Li + ··· Li + Distance and Anion Restriction in Conductivity and Lithium‐Ion Transference Number of Molecular Crystals for Solid State Electrolytes
Abstract Insights into structure‐conductivity mechanisms are investigated for a series of six (dinitrile)2LiPF6 molecular crystals with varied alkyl chain lengths, N≡C─(CH2)n─C≡N, n = 2, 3, 4, 5, 6, and 2Me‐glutaronitrile. The molecular crystals have separate Li+ and channels, with the Li+ions weakly coordinated by four ─C≡N groups. The following correlations are observed: i) shorter Li+⋯ Li+ hopping distances (5.72–8.08 Å) increase ionic conductivity (3.1 × 10−4–0.15 × 10−4 S cm−1 at 25 °C) for all (dinitrile)2LiPF6; ii) when there are unrestricted anion channels, the lithium ion transference number increases ( = 0.39–0.62) as the void volume (565–250 Å3) and Li+⋯ Li+ hopping distance (7.15–5.72 Å) decrease, since a greater fraction of the charge is contributed by the Li+ions; this correlates with n= 2, 4, 5, 6; iii) the exceptions are Gln (n = 3) and 2Me‐Gln, where there are restricted channels for anion migration, and in this case: iv) conductivity decreases (0.57–0.15 × 10−4 S cm−1 at 25 °C), since contributions to the conductivity from anion migration decrease, but v) increases (0.64–0.7) since a greater fraction of the charge is carried by the Li+ ions.
more »
« less
- Award ID(s):
- 2215854
- PAR ID:
- 10651252
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Energy Materials
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−xOx(x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs.more » « less
-
The crystal structure of the ternary germanide Li2MnGe has been re‐evaluated from single‐crystal X‐ray diffraction data. This compound crystallizes in a non‐centrosymmetric superstructure of the ZrCuSiAs type (space groupP4bm, Pearson codetP16), with the lattice parametersa= 6.088(4) Å,c= 6.323(4) Å. First‐principle calculations for the idealized structure predict antiferromagnetic exchange in the square Mn nets and semimetallic ground state. In addition, a new ternary phase with the composition Li2–xMn4+xGe5(x≈ 1.2) was discovered. It adopts the V6Si5structure type (space groupIbam, Pearson codeoI44), with the lattice parametersa= 7.570(2) Å,b= 16.323(3) Å,c= 5.057(1) Å. DSC/TG measurements show that this compound is thermally stable below 995 K.more » « less
-
This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI via a simple melting method. The molecular crystal has both Li+ and I- channels and can be either a Li+ or I- conductor. In the stoichiomnetric crystal (Adpn)2LiI, the Li+ ions interact only with four C≡N groups of Adpn while the I- ions are uncoordinated. Ab initio calculations indicate that the activation energy for ion hopping is less for the I- (Ea = 60 kJ/mol) than for the Li+ (Ea = 93 kJ/mol) ions, and is predominantly an I- conductor, with a lithium-ion transference number (t_Li^+) of t_Li^+ = 0.15, no lithium plating/stripping observed in the cyclic voltammograms (CVs), and a conductivity of σ = 10-4 S/cm at 30 oC. With the addition of excess adiponitrile, which resides in the grain boundaries between the crystal grains, the contribution of Li+ ions to the conductivity increases, so that for the nonstoichiometric molecular crystal (Adpn)3LiI, Li↔ Li^+ redox reactions are observed in the CVs, t_Li^+ = 0.63, conductivity increases to σ = 10-3 S/cm 30 0C, the voltage stability window is 4V, and it is thermally stable to 130 o.C, showcasing the potential of this electrolyte for advanced solid-state Li-I battery applications. The solid (Adpn)3LiI minimizes migration of polyiodides, inhibiting the “shuttle” effect.more » « less
-
The reactions of triphenylsulfonium chloride ([TPS][Cl]) with various acids in methanol yield the corresponding salts triphenylsulfonium triiodide, C18H15S+·I3−or [TPS][I3] (I), triphenylsulfonium perchlorate, C18H15S+·ClO4−or [TPS][ClO4] (II), and triphenylsulfonium hexafluorophosphate, C18H15S+·PF6−or [TPS][PF6] (III), as crystalline products. These crystals were structurally characterized by single-crystal X-ray diffraction. In all three compounds, the sulfur atom in the triphenylsulfonium cation adopts a distorted trigonal–pyramidal geometry. [TPS][I3] (I) and [TPS][PF6](III) both crystallize in the space groupP21/n, while [TPS][ClO4] (II) crystallizes inP21. The S—C bond lengths are comparable across the three salts, and the S—C—S bond angles are consistently between 102 and 106°. Hirshfeld surface analyses reveal that each structure is dominated by hydrogen-based intermolecular contacts, supplemented by anion-specific interactions such as I...H in (I), O...H in (II), and F...H in (III). These contacts organize the ions into mono-periodic ribbon- or chain-like arrangements. No significant π–π stacking is observed.more » « less
An official website of the United States government
