Abstract High‐resolution glider sampling in the southwestern Ross Sea revealed an extensive phytoplankton bloom in austral summer 2022–2023 that persisted for over one month and extended through the upper 100 m of the water column. The temporal mean euphotic‐zone chlorophyll concentration was 20.38.5 , six to nine times higher than average summer Ross Sea concentrations. The bloom was likely initially dominated byPhaeocystis, favored over diatoms due to low light and high iron availability. Our observations are consistent with an ice‐edge bloom likely fueled by iron supply and enhanced stratification from late sea‐ice melt during an anomalously high ice‐covered summer. Photoacclimation to particularly low light conditions might have enhanced Chl‐a fluorescence. In the Ross Sea, the most productive region in the Southern Ocean, understanding the drivers of this extreme bloom is crucial for predicting potential impacts of the changing climate on primary production rates and carbon sequestration.
more »
« less
Critical uncoupling between biogeochemical stocks and rates in Ross Sea springtime production–export dynamics
Abstract. Three biogeochemical glider surveys in the Ross Sea between 2010 and 2023 were combined and analysed to assess production–export stock and rate dynamics. As the most productive of any Antarctic continental shelf, the Ross Sea is a site of substantial physical and biogeochemical interest. While this region and its annual bloom have been characterised for decades, logistical constraints, such as ship time and sea ice cover, have prevented a comprehensive understanding of this region over long (> 1–2 months) timescales and at high spatiotemporal resolution. Here, we use high-resolution datasets from autonomous gliders in mass balance equations to calculate short-term (days to weeks) net community production via oxygen concentration, change in particulate organic carbon (POC) concentration over time, and POC export potential during the period of peak primary production in the region (November–February). Our results show an overall decoupling of net community production (NCP), driven by biologic changes in oxygen, from overall biomass concentration as well as changes in POC over time. NCP and carbon change vary between seasons and appear related to changes in ice concentration and stratification. Substantial spatiotemporal variability exists in all datasets, but high-resolution sampling reveals short-term variations that are likely masked in other studies. Our study reinforces the need for high-resolution sampling and supports previous classifications of the Ross Sea as a high-productivity (average NCP range −0.7 to 0.2 g C m−2 d−1), low-export (average changes in POC over time range −0.1 to 0.1 g C m−2 d−1) system during the productive austral spring and sheds additional light on the mechanisms controlling these processes.
more »
« less
- Award ID(s):
- 2040571
- PAR ID:
- 10651263
- Publisher / Repository:
- Ocean Science
- Date Published:
- Journal Name:
- Ocean Science
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1812-0792
- Page Range / eLocation ID:
- 1223 to 1236
- Subject(s) / Keyword(s):
- Ross Sea gliders chlorophyll production carbon
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl- a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.more » « less
-
Abstract Carbon export out of the surface ocean via the biological pump is a critical sink for atmospheric carbon dioxide. This process transports organic carbon to the deep ocean through sinking particulate organic carbon (POC) and the downward transport of suspended POC and dissolved organic carbon (DOC). Changes in the relative contribution of each pathway can significantly affect the magnitude and efficiency of carbon export to depth. Net community production (NCP), an analog of carbon export under steady state assumptions, is typically estimated using budgets of biologically important chemical tracers in the upper ocean constrained by ship‐board or autonomous platform observations. In this study, we use measurements from biogeochemical profiling floats, the Ocean Station Papa mooring, and recently developed algorithms for carbonate system parameters to constrain budgets for three tracers (nitrate, dissolved inorganic carbon, and total alkalinity) and estimate NCP in the Northeast Pacific from 2009 to 2017. Using our multiple‐tracer approach, and constraining end‐member nutrient ratios of the POC and DOC produced, we not only calculate regional NCP throughout the annual cycle and across multiple depth horizons, but also partition this quantity into particulate and dissolved portions. We also use a particle backscatter‐based approach to estimate POC attenuation with depth and present a new method to constrain particle export across deeper horizons and estimate in situ export efficiency. Our results agree well with previously published estimates of regional carbon export annually and suggest that the approaches presented here could be used to assess the magnitude and efficiency of carbon export in other regions of the world's oceans.more » « less
-
Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.more » « less
-
Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.more » « less
An official website of the United States government

