skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid quantification of whole seed fatty acid amount, composition, and shape phenotypes from diverse oilseed species with large differences in seed size
Background Seed oils are widely used in the food, biofuel, and industrial feedstock industries, with their utility and value determined by total oil content and fatty acid composition. Current high throughput seed oil analysis methods either lack accuracy in total fatty acid profiling or require extensive labor for lipid extraction prior to derivatization to fatty acid methyl esters (FAME) and quantification by gas chromatography (GC). Alternatively, direct whole seed FAME production methods have been developed for the very small seeds in the model species Arabidopsis thaliana but these have generally not been adapted to larger seeds of most oilseed crops. Results High-throughput direct whole seed FAME production methods were optimized for seeds up to 5 mg each utilizing acid-catalyzed esterification. For the oilseed species Camelina sativa, Thlaspi avernse (pennycress), Cuphea viscosissima, and Brassica napus (var. Canola), the total seed fatty acid content and composition from direct seed esterification to FAME matched that of lipid extract derivatization demonstrating the accuracy of the methods. In combination with seed phenotyping using GridFree, this approach enabled the development of a rapid pipeline for simultaneous seed weight, count, size/shape phenotyping, and oil analysis. For the larger and tougher seeds produced by Limnanthes alba (Meadowfoam) and Cannabis sativa L. (hemp) the whole seed acid-based method proved insufficient, and prior laborious homogenization of seeds was required. Therefore, a rapid one-tube bead homogenization and base catalyzed-esterification method was developed. Base-derived fatty acid esterification cannot derivatize free fatty acids leading to slightly lower total seed fatty acid than acid-catalyzed methods, however the seed oil content and fatty acid composition that is valuable for screening large numbers of samples in research populations was accurately measured. Conclusions New rapid whole seed fatty acid esterification and phenotyping protocols were developed to accurately assess oilseed lipid content. These methods are particularly valuable in oilseed research, breeding, and engineering applications where efficient analysis of large numbers of samples and accurate oil fatty acid profiling is essential. While having been developed for current and emerging oilseed crops, these methods also provide a foundation from which protocols might be established for new and emerging crop species.  more » « less
Award ID(s):
2242822 1829365
PAR ID:
10651410
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Plant Methods
Volume:
21
Issue:
1
ISSN:
1746-4811
Page Range / eLocation ID:
67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase. Three soybean genes orthologous to the Arabidopsis lipase gene SUGAR-DEPENDENT1 ( SDP1 ) are upregulated at this time. Suppression of these genes resulted in higher oil levels, with lipid levels in the best lines exceeding 24% of seed weight. In addition, lipase-suppressed lines produced larger seeds compared to wild-type plants, resulting in increases of over 20% in total lipid per seed. Levels of raffinose and stachyose were lower in the transgenic lines, with average reductions of 15% in total raffinose family oligosaccharides observed. Despite the increase in oil, protein content was not negatively impacted and trended higher in the transgenic lines. These results are consistent with a role for SDP1 in turning over TAG to supply carbon for other needs, including the synthesis of oligosaccharides, and offer new strategies to further improve the composition of soybean seeds. 
    more » « less
  2. null (Ed.)
    The combination of 13C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined. Therefore, analyzing isotopically labeled MSI data requires streamlined procedures to support biologically meaningful interpretations. Using currently available software and techniques, here we describe a workflow to analyze 13C-labeled isotopologues of the membrane lipid and storage oil lipid intermediate―phosphatidylcholine (PC). Our results with embryos of the oilseed crops, Camelina sativa and Thlaspi arvense (pennycress), demonstrated greater 13C-isotopic labeling in the cotyledons of developing embryos compared with the embryonic axis. Greater isotopic enrichment in PC molecular species with more saturated and longer chain fatty acids suggest different flux patterns related to fatty acid desaturation and elongation pathways. The ability to evaluate MSI data of isotopically labeled plant embryos will facilitate the potential to investigate spatial aspects of metabolic flux in situ. 
    more » « less
  3. Paysonia auriculata (Brassicaceae) produces multiple hydroxy fatty acids as major components of the seed oil. We tracked the changes in seed oil composition and gene expression during development, starting 14 days after flowers had been pollinated. Seed oil changes showed initially higher levels of saturated and unsaturated fatty acids (FAs) but little accumulation of hydroxy fatty acids (HFAs). Starting 21 days after pollination (DAP) HFA content sharply increased, and reached almost 30% at 28 DAP. Total seed oil also increased from a low of approximately 2% at 14 DAP to a high of approximately 20% by 42 DAP. We identified almost all of the fatty acid synthesis and modification genes that are known from Arabidopsis, and, in addition, a strong candidate for the hydroxylase gene that mediates the hydroxylation of fatty acids to produce valuable hydroxy fatty acids (HFAs) in this species. The gene expression network revealed is very similar to that of the emerging oil crop, Physaria fendleri , in the sister genus to Paysonia . Phylogenetic analyses indicate the hydroxylase enzyme, FAH12, evolved only once in Paysonia and Physaria , and that the enzyme is closely related to FAD2 enzymes. Phylogenetic analyses of FAD2 and FAH12 in the Brassicaceae and outgroup genera suggest that the branch leading to the hydroxylase clade of Paysonia and Physaria is under relaxed selection, compared with the strong purifying selection found across the FAD2 lineages. 
    more » « less
  4. Abstract Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1) share responsibility for triacylglycerol (TAG) biosynthesis, and their selectivities control TAG fatty acid (FA) compositions. For rational metabolic engineering of seed oils, replacing endogenous TAG biosynthesis with exogenous enzymes containing different substrate FA selectivities is desirable; however, the dgat1-1/pdat1-2 double mutant is pollen lethal. Here, we evaluated the ability of 3 DGAT1s, from phylogenetically diverse plants with distinct TAG assembly processes, to completely replace endogenous TAG biosynthesis in Arabidopsis (Arabidopsis thaliana). We transformed dgat1-1 mutant plants with expression constructs for DGAT1s from Camelina sativa, Physaria fendleri, and castor (Ricinus communis). Transgene expression was properly “contextualized” by using a previously determined minimum necessary expression unit containing the promoter/5′ UTR and first intron of native AtDGAT1; both of these DNA elements are essential for pollen expression. Next, we crossed homozygous lines with a DGAT1/DGAT1/PDAT1/pdat1-2 parent. C. sativa and P. fendleri DGAT1s restored the FA compositions and transcriptional differences of dgat1-1 to near wild-type and rescued the dgat1-1/pdat1-2 pollen lethality. R. communis DGAT1 was active in dgat1-1 seeds but produced unique oil profiles and alterations in the expression of lipid metabolic genes; it also failed to rescue dgat1-1/pdat1-2 lethality. This study confirms that the promoter and first intron of AtDGAT1 can modulate the expression of foreign DGAT1 genes to fit the correct spatiotemporal profile necessary for completely replacing endogenous TAG biosynthesis. Furthermore, it demonstrates an additional layer of unexpected enzyme incompatibility between oilseed lineages, which may complicate bioengineering approaches that seek to replace essential genes with orthologs. 
    more » « less
  5. Abstract FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function, similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features. Database URL: https://www.fatplants.net/ 
    more » « less