skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Accelerated predictions of the sublimation enthalpy of organic materials with machine learning
Abstract The sublimation enthalpy, , is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of . With an error of kJ/mol in instantaneous predictions of , the ML model developed in this work will be useful for the community.  more » « less
Award ID(s):
1921873
PAR ID:
10651635
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Materials Genome Engineering Advances
Volume:
3
Issue:
1
ISSN:
2940-9489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the machine learning (ML) methods have been largely used recently, the predicted materials properties usually cannot exceed the range of original training data. We deployed a boundless objective-free exploration approach to combine traditional ML and density functional theory (DFT) in searching extreme material properties. This combination not only improves the efficiency for screening large-scale materials with minimal DFT inquiry, but also yields properties beyond original training range. We use Stein novelty to recommend outliers and then verify using DFT. Validated data are then added into the training dataset for next round iteration. We test the loop of training-recommendation-validation in mechanical property space. By screening 85,707 crystal structures, we identify 21 ultrahigh hardness structures and 11 negative Poisson’s ratio structures. The algorithm is very promising for future materials discovery that can push materials properties to the limit with minimal DFT calculations on only ~1% of the structures in the screening pool. 
    more » « less
  2. Abstract Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals. 
    more » « less
  3. Abstract Machine learning (ML) has become a central focus of the computational chemistry community. I will first discuss my personal history in the field. Then I will provide a broader view of how this resurgence in ML interest echoes and advances upon earlier efforts. Although numerous changes have brought about this latest wave, one of the most significant is the increased accuracy and efficiency of low‐cost methods (e. g., density functional theory or DFT) that have made it possible to generate large data sets for ML models. ML has also been used to bypass, guide, or improve DFT. The field of computational chemistry thus finds itself at a crossroads as ML both augments and supersedes traditional efforts. I will present what I believe the role of the computational chemist will be in this evolving landscape, with specific focus on my experience in the development of autonomous workflows in computational materials discovery for open‐shell transition‐metal chemistry. 
    more » « less
  4. null (Ed.)
    Abstract Accurate theoretical predictions of desired properties of materials play an important role in materials research and development. Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as those of crystalline compounds, a vital issue is how to construct low-dimensional representations for input crystal structures with chemical insights. In this work, we introduce an algebraic topology-based method, called atom-specific persistent homology (ASPH), as a unique representation of crystal structures. The ASPH can capture both pairwise and many-body interactions and reveal the topology-property relationship of a group of atoms at various scales. Combined with composition-based attributes, ASPH-based ML model provides a highly accurate prediction of the formation energy calculated by density functional theory (DFT). After training with more than 30,000 different structure types and compositions, our model achieves a mean absolute error of 61 meV/atom in cross-validation, which outperforms previous work such as Voronoi tessellations and Coulomb matrix method using the same ML algorithm and datasets. Our results indicate that the proposed topology-based method provides a powerful computational tool for predicting materials properties compared to previous works. 
    more » « less
  5. The discovery of advanced thermal materials with exceptional phonon properties drives technological advancements, impacting innovations from electronics to superconductors. Understanding the intricate relationship between composition, structure, and phonon thermal transport properties is crucial for speeding up such discovery. Exploring innovative materials involves navigating vast design spaces and considering chemical and structural factors on multiple scales and modalities. Artificial intelligence (AI) is transforming science and engineering and poised to transform discovery and innovation. This era offers a unique opportunity to establish a new paradigm for the discovery of advanced materials by leveraging databases, simulations, and accumulated knowledge, venturing into experimental frontiers, and incorporating cutting-edge AI technologies. In this perspective, first, the general approach of density functional theory (DFT) coupled with phonon Boltzmann transport equation (BTE) for predicting comprehensive phonon properties will be reviewed. Then, to circumvent the extremely computationally demanding DFT + BTE approach, some early studies and progress of deploying AI/machine learning (ML) models to phonon thermal transport in the context of structure–phonon property relationship prediction will be presented, and their limitations will also be discussed. Finally, a summary of current challenges and an outlook of future trends will be given. Further development of incorporating AI/ML algorithms for phonon thermal transport could range from phonon database construction to universal machine learning potential training, to inverse design of materials with target phonon properties and to extend ML models beyond traditional phonons. 
    more » « less