In Hawaiʻi, tsunamis are often described in orally transmitted legends (moʻolelo). This study examines sedimentary evidence of a possible local submarine landslide-generated tsunami, described in a legend from the south east coast of Maui which originated between the 15th Century CE and the first arrival of Europeans in 1778 CE. Physical evidence for a tsunami, found at the Nu’u Refuge, Maui, is primarily comprised of an extensive coral clast deposit (found 8.5 m above msl and 251 m inland from the shoreline) together with waterworn cobbles which form fracture-embedded wedge clasts in a local basalt escarpment (at up to 8 m above msl). U/Th dating of the coral clasts gives a maximum tsunami deposit age of 1671 CE for the event that may have inspired the local moʻolelo. This depositional sequence is used to characterize the nature of the assumed tsunami in terms of inundation distance, maximum wave runup and minimum flow velocities. A numerical model developed using GeoClaw matches well with the physical evidence. The data and modeling presented here suggest that locallygenerated tsunamis from submarine landslides warrant further research attention as sources of destructive high energy marine inundation events.
more »
« less
Forecasting tsunami inundation with convolutional neural networks for a potential Cascadia Subduction Zone rupture
Tsunamis in the last two decades have resulted in the loss of life of over 200,000 people and have caused billions of dollars in damage. There is therefore great motivation for the development and improvement of current tsunami warning systems. The work presented here represents advancements made towards the creation of a neural network-based tsunami warning system which can produce fast inundation forecasts with high accuracy. This was done by first improving the waveform resolution and accuracy of Tsunami Squares, an efficient cellular automata approach to wave simulation. It was then used to create a database of precomputed tsunamis in the event of a magnitude 9+ rupture of the Cascadia Subduction Zone, located only ∼100 km off the coast of Oregon, US. Our approach utilized a convolutional neural network which took wave height data from buoys as input and proved successful as maps of maximum inundation could be predicted for the town of Seaside, OR with a median error of ∼0.5 m.
more »
« less
- PAR ID:
- 10651660
- Publisher / Repository:
- Authorea, Inc.
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw 7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems.more » « less
-
Abstract. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw 7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems.more » « less
-
Global water level variability observed after the Hunga Tonga-Hunga Ha'apai volcanic tsunami of 2022Abstract. The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 provided a rare opportunity to understand global tsunamiimpacts of explosive volcanism and to evaluate future hazards, includingdangers from “volcanic meteotsunamis” (VMTs) induced by the atmosphericshock waves that followed the eruption. The propagation of the volcanic andmarine tsunamis was analyzed using globally distributed 1 min measurementsof air pressure and water level (WL) (from both tide gauges and deep-waterbuoys). The marine tsunami propagated primarily throughout the Pacific,reaching nearly 2 m at some locations, though most Pacific locationsrecorded maximums lower than 1 m. However, the VMT resulting from theatmospheric shock wave arrived before the marine tsunami and propagatedglobally, producing water level perturbations in the Indian Ocean, theMediterranean, and the Caribbean. The resulting water level response of manyPacific Rim gauges was amplified, likely related to wave interaction withbathymetry. The meteotsunami repeatedly boosted tsunami wave energy as itcircled the planet several times. In some locations, the VMT was amplifiedby as much as 35-fold relative to the inverse barometer due to near-Proudmanresonance and topographic effects. Thus, a meteotsunami from a largereruption (such as the Krakatoa eruption of 1883) could yield atmosphericpressure changes of 10 to 30 mb, yielding a 3–10 m near-field tsunami thatwould occur in advance of (usually) larger marine tsunami waves, posingadditional hazards to local populations. Present tsunami warning systems donot consider this threat.more » « less
-
Abstract An efficient and cost‐effective near‐field tsunami warning system is crucial for coastal communities. The existing tsunami forecasting system is based on offshore Deep‐Ocean Assessment and Reporting of Tsunamis and Global Navigation Satellite System (GNSS) buoys which are not affordable for many countries. A potential cost‐effective solution is to utilize position data from ships traveling in coastal and offshore regions. In this study, we examine the feasibility of using ship‐borne GNSS data in tsunami forecasting. We carry out synthetic experiments by applying a data assimilation (DA) method with ship position (elevation and velocity) data. Our findings show that the DA method can recover the reference model with high accuracy if a dense network of ship elevation data is used. However, the use of ship velocity data alone is unable to recover the reference model. In addition, we carried out sensitivity studies of the DA method to the ship spatial distribution. We find that a 20 km gap between the ships works well in terms of accuracy and computational time for the example source model that we explored. The highest accuracy is obtained when data from a sufficient number of ships traveling in and around the tsunami source area are available.more » « less
An official website of the United States government

