Despite remarkable progress, colloidal synthesis of metal nanocrystal is still far away from reaching the goal for robust, reproducible, and scalable production. Even with the adoption of seed-mediated growth, the synthesis can still be complicated by issues such as self-nucleation, galvanic replacement, stochastic symmetry reduction, and unwanted compositional variation. All these issues can be addressed by switching to steady-state synthesis characterized by a slow, constant, and tightly controlled reduction rate. Steady-state synthesis can be achieved by adding one reactant dropwise while using the other reactant in large excess, but this method is not suitable for scale-up production in a continuous flow reactor. There is a pressing need to develop alternative methods capable of establishing the steady-state kinetics characteristic of dropwise addition while introducing both reactants by one-shot injection. In this Perspective, we discuss a number of methods that allow for both one-shot injection and steady-state synthesis.
more »
« less
This content will become publicly available on October 1, 2026
Understanding the Kinetic Aspects Responsible for the Formation of 3‐Aminophenol‐Formaldehyde Resin Beads with Different Morphologies
Abstract This work investigates the kinetics and mechanistic details involved in the synthesis of phenolic resin beads when formaldehyde is added in one‐shot or dropwise to react with an excess amount of 3‐aminophenol. In one‐shot synthesis, the sharp rise in formaldehyde concentration, [F], to a high level leads to a rapid kinetics that triggers simultaneous substitution, condensation, and polymerization reactions for the formation of homogeneous, fully‐cross‐linked beads that cannot be etched by acetone. Conversely, dropwise synthesis, characterized by a significantly lower [F] in the early stage, results in the formation of low‐substitution monomers, which then polymerize into heterogeneous beads consisting of a cross‐linked shell and an etchable core. With dropwise addition, it can precisely control the level of [F] in the reaction mixture to obtain resin beads with tunable diameters. After etching away the lightly‐crosslinked core, the beads can be carbonized to obtain hollow carbon beads sought for applications in catalysis and energy storage.
more »
« less
- Award ID(s):
- 2333595
- PAR ID:
- 10651700
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- Particle & Particle Systems Characterization
- Volume:
- 42
- Issue:
- 10
- ISSN:
- 0934-0866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Teaching experiments involving edible, biodegradable calcium alginate beads serve as an attractive model system to introduce upper secondary age students to core chemistry topics through innovations in sustainable consumer products. A teaching experiment is described that engages students with the synthesis of calcium alginate hydrogel beads from sodium alginate and calcium lactate, two food-safe and renewable materials. The beads’ outer membranes are a result of ionic interactions between carboxylate groups from alginate strands and the divalent calcium cations between them, thus forming cross-linked polymers. Protonation of the carboxylate groups on the alginate strands decreases crosslinking density affecting bead formation. First, various concentrations of citric acid are used to lower the pH of the sodium alginate solution and the effect on the calcium alginate bead formation is observed. A correlation between pH and bead shape and firmness is derived. This information is then used to explore juices with varying natural acidities. The experiment is amenable to implementation in the classroom or as an at-home activity. Learning outcomes include acid-base reactions, chemical bonding, polymer structures, and green chemistry concepts. Students consider the environmental challenges of traditional plastics used in packaging and how innovative new commercial products are attempting to provide solutions.more » « less
-
AbstractThe recovery and reuse of phosphorus (P) from wastewater treatment process is a critical and viable target for sustainable P utilization. This study explores a novel approach of integrating ultrafine mineral particles into hydrogel matrixes for enhancing the capacity of phosphate adsorption. Dolomite‐alginate (DA) hydrogel beads were prepared by integrating ball‐milled, ultrafine dolomite powders into calcium cross‐linked alginate hydrogel matrix. The adsorption isotherms followed a Langmuir–Freundlich adsorption model with higher specific adsorption capacity than those reported in literature. The kinetics of phosphate adsorption suggest that the adsorption is diffusion controlled. Investigation of adsorption capacity at differentpHshowed a maximum adsorption capacity in thepHrange of 7–10. Lastly, we demonstrated that theDAbeads are capable of slowly releasing most of the adsorbed phosphate, which is an important criterion for them to be an effective phosphorous fertilizer. This study, usingDAcomposite hydrogel as an example, demonstrates a promising strategy of immobilizing ultrafine mineral adsorbents into biocompatible hydrogel matrix for effective recovery of phosphorous resource from wastewater. Practitioner pointsIntegration of dolomite and alginate hydrogel beads is demonstrated using ball milling.Ball milling process increases the specific adsorption capacity of dolomite on phosphorus.Adsorption isotherms, kinetics, andpHeffects of the dolomite–alginate beads are investigated.The dolomite–alginate beads can be used as slow‐release phosphorus fertilizer.more » « less
-
Abstract Fluoride is one of the most consumed pharmaceuticals in the world, and its facility in preventing dental caries is recognized as one of the top 10 public health achievements of the 20th century. Although hydroxylapatite is often used as an analog of dental enamel, the details of the substitution of F for OH in the apatite anion column are not well known. Using new synthesis techniques, this study extends the structure work on P63/m apatites along the middle portion of the F-OH apatite join to compositions near the composition of fluoridated human teeth. The first F substituent in hydroxylapatite, near fluoridated dental enamel compositions, is dramatically underbonded by the surrounding Ca2 atoms (0.72 vu) in a hydroxylapatite matrix. However, the hydroxyl hydrogen is able to contribute 0.20 or 0.10 vu in hydrogen bonding, depending on whether the substitution creates a reversal site in the anion column; this hydrogen bonding alleviates the bonding requirements of the substituent F. As F concentrations increase along the join, the average hydroxyl contributes increasing amounts of hydrogen bonding to the F column anions; to mitigate the loss of its hydrogen bonding, the hydroxyl oxygen migrates toward the adjacent mirror plane that contains the bonded Ca2 atoms, and the triangle of bonded Ca2 ions concomitantly contracts. These two mechanisms increase bonding to the column hydroxyl oxygen from the adjoining Ca2 atoms to balance the loss of hydrogen bonding that stabilizes the substituent F column anion and the increasing concentration of underbonded F.more » « less
-
IntroductionThe California purple sea urchin,Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is theSpTransformer(SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marineVibrio. A recombinant (r)SpTrf-E1-Ec protein produced byE. colialso bindsVibriobut does not augment phagocytosis. MethodsTo address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. ResultsThe rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. ConclusionThese findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.more » « less
An official website of the United States government
