skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 27, 2026

Title: Non-local Hamilton–Jacobi–Bellman equations for the stochastic optimal control of path-dependent piecewise deterministic processes
We study the optimal control of path-dependent piecewise deterministic processes. An appropriate dynamic programming principle is established. We prove that the associated value function is the unique minimax solution of the corresponding non-local path-dependent Hamilton-Jacobi-Bellman equation. This is the first well-posedness result for nonsmooth solutions of fully nonlinear non-local path-dependent partial differential equations.  more » « less
Award ID(s):
2106077
PAR ID:
10651773
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Stochastic Processes and their Applications
Volume:
192
Issue:
C
ISSN:
0304-4149
Page Range / eLocation ID:
104813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish existence and uniqueness of minimax solutions for a fairly general class of path-dependent Hamilton-Jacobi equations. In particular, the relevant Hamiltonians can contain the solution and they only need to be measurable with respect to time. We apply our results to optimal control problems of (delay) functional differential equations with cost functionals that have discount factors and with time-measurable data. Our main results are also crucial for our companion paper Bandini and Keller [arXiv preprint arXiv:2408.02147 (2024)], where non-local path-dependent Hamilton-Jacobi-Bellman equations associated to the stochastic optimal control of non-Markovian piecewise deterministic processes are studied. 
    more » « less
  2. Abstract Fatigue short‐cracks in Mg alloys display complex growth behavior due to high plastic anisotropy and crack path dependence on local microstructural features. In this study, the three‐dimensional crystallography of short‐crack paths in Mg alloy WE43 was characterized by mapping near‐field high‐energy X‐ray diffraction microscopy (HEDM) reconstructed grain maps to high‐resolution X‐ray CT reconstructions of the fracture surfaces in the crack initiation and short‐crack growth regions of six ultrasonic fatigue specimens. Crack–grain–boundary intersections were analyzed at 81 locations across the six crack paths. The basal intragranular, non‐basal intragranular, or intergranular character of short‐crack growth following each boundary intersection was correlated to crystallographic and geometric parameters of the trailing and leading grains, three‐dimensional grain boundary plane, and advancing crack front. The results indicate that crack paths are dependent on the combined crystallographic and geometric character of the local microstructure, and crack path prediction can be improved by use of dimensionality reduction on subsets of high‐linear‐correlation microstructural parameters. 
    more » « less
  3. null (Ed.)
    The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power-law shape function and non-stationary noises with a power-law variance function. In this paper, we study sample path properties of the generalized fractional Brownian motion, including Hölder continuity, path differentiability/non-differentiability, and functional and local law of the iterated logarithms. 
    more » « less
  4. The Dragonfly networks have been adopted in the current supercomputers, and will be deployed in future generation supercomputers and data centers. Effective routing on Dragonfly is challenging. Universal Globally Adaptive Load-balanced routing (UGAL) is the state-of-the-art routing algorithm for Dragonfly. For each packet, UGAL selects either a minimal path or a non-minimal path based on their estimated latencies. Practical UGAL makes routing decisions with local information, deriving the estimated latency for each path from the local queue occupancy and path hop count information. In this work, we develop techniques to improve the accuracy of the latency estimation for UGAL with local information, which results in more effective routing decisions. In particular, our schemes are able to proactively mitigate the potential network congestion with imbalanced network traffic. Extensive simulation experiments using synthetic traffic patterns and application workloads demonstrate that our enhanced UGAL schemes significantly improve the routing performance for many common traffic conditions. 
    more » « less
  5. Abstract Acoustic non-reciprocity, referring to the phenomenon of path-dependent propagation, has diverse applications in mechanical devices. This paper presents a numerical study on a periodic triangle-shape structure that breaks reciprocity in a passive manner over a broad range of frequency and energy. The proposed structure contains strong nonlinearity and geometric asymmetry, which contributes to a direction-dependent dispersion relationship. When the signal frequency falls in the band pass in one direction, and band gap in the other, a unidirectional wave propagation results. The system achieves giant non-reciprocity with minimal distortion in the frequency content of the signal. 
    more » « less