Abstract MotivationAdvances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks. ResultsWe propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth–death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy. Availability and implementationAccompanying code in R is available at https://github.com/cbskust/DDE_BD. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
This content will become publicly available on November 1, 2026
Scalable inference and identifiability of kinetic parameters for transcriptional bursting from single cell data
Abstract MotivationStochastic gene expression and cell-to-cell heterogeneity have attracted increased interest in recent years, enabled by advances in single-cell measurement technologies. These studies are also increasingly complemented by quantitative biophysical modeling, often using the framework of stochastic biochemical kinetic models. However, inferring parameters for such models (i.e., the kinetic rates of biochemical reactions) remains a technical and computational challenge, particularly doing so in a manner that can leverage high-throughput single-cell sequencing data. ResultsIn this work, we develop a chemical master equation model reference library-based computational pipeline to infer kinetic parameters describing noisy mRNA distributions from single-cell RNA sequencing data, using the commonly applied stochastic telegraph model. The approach fits kinetic parameters via steady-state distributions, as measured across a population of cells in snapshot data. Our pipeline also serves as a tool for comprehensive analysis of parameter identifiability, in both a priori (studying model properties in the absence of data) and a posteriori (in the context of a particular dataset) use-cases. The pipeline can perform both of these tasks, i.e. inference and identifiability analysis, in an efficient and scalable manner, and also serves to disentangle contributions to uncertainty in inferred parameters from experimental noise versus structural properties of the model. We found that for the telegraph model, the majority of the parameter space is not practically identifiable from single-cell RNA sequencing data, and low experimental capture rates worsen the identifiability. Our methodological framework could be extended to other data types in the fitting of small biochemical network models. Availability and implementationAll code relevant to this work is available at https://github.com/Read-Lab-UCI/TelegraphLikelihoodInfer, archival DOI: https://doi.org/10.5281/zenodo.16915450.
more »
« less
- Award ID(s):
- 2022182
- PAR ID:
- 10651799
- Editor(s):
- Mathelier, Anthony
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 41
- Issue:
- 11
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Finley, Stacey D (Ed.)In experiments, the distributions of mRNA or protein numbers in single cells are often fitted to the random telegraph model which includes synthesis and decay of mRNA or protein, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by crucial biological mechanisms such as feedback regulation, non-exponential gene inactivation durations, and multiple gene activation pathways. Here we investigate the dynamical properties of four relatively complex gene expression models by fitting their steady-state mRNA or protein number distributions to the simple telegraph model. We show that despite the underlying complex biological mechanisms, the telegraph model with three effective parameters can accurately capture the steady-state gene product distributions, as well as the conditional distributions in the active gene state, of the complex models. Some effective parameters are reliable and can reflect realistic dynamic behaviors of the complex models, while others may deviate significantly from their real values in the complex models. The effective parameters can also be applied to characterize the capability for a complex model to exhibit multimodality. Using additional information such as single-cell data at multiple time points, we provide an effective method of distinguishing the complex models from the telegraph model. Furthermore, using measurements under varying experimental conditions, we show that fitting the mRNA or protein number distributions to the telegraph model may even reveal the underlying gene regulation mechanisms of the complex models. The effectiveness of these methods is confirmed by analysis of single-cell data forE. coliand mammalian cells. All these results are robust with respect to cooperative transcriptional regulation and extrinsic noise. In particular, we find that faster relaxation speed to the steady state results in more precise parameter inference under large extrinsic noise.more » « less
-
Abstract MotivationIntegrative analysis of large-scale single-cell data collected from diverse cell populations promises an improved understanding of complex biological systems. While several algorithms have been developed for single-cell RNA-sequencing data integration, many lack the scalability to handle large numbers of datasets and/or millions of cells due to their memory and run time requirements. The few tools that can handle large data do so by reducing the computational burden through strategies such as subsampling of the data or selecting a reference dataset to improve computational efficiency and scalability. Such shortcuts, however, hamper the accuracy of downstream analyses, especially those requiring quantitative gene expression information. ResultsWe present SCEMENT, a SCalablE and Memory-Efficient iNTegration method, to overcome these limitations. Our new parallel algorithm builds upon and extends the linear regression model previously applied in ComBat to an unsupervised sparse matrix setting to enable accurate integration of diverse and large collections of single-cell RNA-sequencing data. Using tens to hundreds of real single-cell RNA-seq datasets, we show that SCEMENT outperforms ComBat as well as FastIntegration and Scanorama in runtime (upto 214× faster) and memory usage (upto 17.5× less). It not only performs batch correction and integration of millions of cells in under 25 min, but also facilitates the discovery of new rare cell types and more robust reconstruction of gene regulatory networks with full quantitative gene expression information. Availability and implementationSource code freely available for download at https://github.com/AluruLab/scement, implemented in C++ and supported on Linux.more » « less
-
Abstract BackgroundDirect-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. ResultHere, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. ConclusionsSequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available athttps://github.com/dnonatar/Sequoia.more » « less
-
Abstract MotivationHigh-throughput RNA sequencing has become indispensable for decoding gene activities, yet the challenge of reconstructing full-length transcripts persists. Traditional single-sample assemblers frequently produce fragmented transcripts, especially in single-cell RNA-seq data. While algorithms designed for assembling multiple samples exist, they encounter various limitations. ResultsWe present Aletsch, a new assembler for multiple bulk or single-cell RNA-seq samples. Aletsch incorporates several algorithmic innovations, including a “bridging” system that can effectively integrate multiple samples to restore missed junctions in individual samples, and a new graph-decomposition algorithm that leverages “supporting” information across multiple samples to guide the decomposition of complex vertices. A standout feature of Aletsch is its application of a random forest model with 50 well-designed features for scoring transcripts. We demonstrate its robust adaptability across different chromosomes, datasets, and species. Our experiments, conducted on RNA-seq data from several protocols, firmly demonstrate Aletsch’s significant outperformance over existing meta-assemblers. As an example, when measured with the partial area under the precision-recall curve (pAUC, constrained by precision), Aletsch surpasses the leading assemblers TransMeta by 22.9%–62.1% and PsiCLASS by 23.0%–175.5% on human datasets. Availability and implementationAletsch is freely available at https://github.com/Shao-Group/aletsch. Scripts that reproduce the experimental results of this manuscript is available at https://github.com/Shao-Group/aletsch-test.more » « less
An official website of the United States government
