IntroductionIndividuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. MethodsIn this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories. ResultsThe MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone. DiscussionTo realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities. 
                        more » 
                        « less   
                    
                            
                            Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning
                        
                    
    
            A hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges. A higher-level neural network–based iterative learning controller (NNILC) is derived to generate torques needed to drive the hybrid system. Then, a low-level model predictive control (MPC)-based allocation strategy optimally distributes the torque contributions between FES and the exoskeleton’s knee motors based on the muscle fatigue and recovery characteristics of a participant’s quadriceps muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-dependent desired joint trajectories. The experimental results on four non-disabled participants validate the effectiveness of the proposed NNILC-MPC framework. The root mean square error (RMSE) of the knee joint and the hip joint was reduced by 71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st sit-to-stand iteration. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1646009
- PAR ID:
- 10321596
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This paper predicts the optimal motion for a repetitive lifting task considering muscle fatigue. The Denavit–Hartenberg (DH) representation is employed to characterize the two-dimensional (2D) digital human model with 10 degrees-of-freedom (DOFs). Two joint-based muscle fatigue models, i.e., a three-compartment controller (3CC) muscle fatigue model (validated for isometric tasks) and a four-compartment controller with augmented recovery (4CCr) muscle fatigue model (validated for dynamic tasks), are utilized to account for the fatigue effect due to the repetitive motion. The lifting problem is formulated mathematically as an optimization problem, with the objective of minimizing dynamic effort and joint acceleration subjected to both physical and task-specific constraints. The design variables include joint angle profiles, discretized by quartic B-splines, and the control points of the profiles of the fatigue compartments associated with major body joints (spinal, shoulder, elbow, hip, and knee joints). The outcomes of the simulation encompass profiles of joint angles, joint torques, and the advancement of joint fatigue. It is notable that the profiles of joint angles and torques exhibit distinct periodic patterns. Numerical simulations and experiments with a 20 kg box reveal that the maximum predicted lifting cycles are 11 for the 3CC fatigue model and 13 for the 4CCr fatigue model while the experimental result is 13 cycles. The results indicate that the 4CCr muscle fatigue model provides enhanced accuracy over the 3CC model for predicting task duration (number of cycles) of repetitive lifting.more » « less
- 
            null (Ed.)Task-invariant control methods for powered exoskeletons provide flexibility in assisting humans across multiple activities and environments. Energy shaping control serves this purpose by altering the human body’s dynamic characteristics in closed loop. Our previous work on potential energy shaping alters the gravitational vector to reduce the user’s perceived gravity, but this method cannot provide velocity-dependent assistance. The interconnection and damping assignment passivity-based control (IDA-PBC) method provides more freedom to shape a dynamical system’s energy through the interconnection structure of a port-controlled Hamiltonian system model. This paper derives a novel energetic control strategy based on IDA-PBC for a backdrivable knee-ankle exoskeleton. The control law provides torques that depend on various basis functions related to gravitational and gyroscopic terms. We optimize a set of constant weighting parameters for these basis functions to obtain a control law that produces able-bodied joint torques during walking on multiple ground slopes. We perform experiments with an able-bodied human subject wearing a knee-ankle exoskeleton to demonstrate reduced activation in certain lower-limb muscles.more » « less
- 
            In this study, we introduce a two-dimensional (2D) human skeletal model coupled with knee, spine, and shoulder exoskeletons. The primary purpose of this model is to predict the optimal lifting motion and provide torque support from the exoskeleton through the utilization of inverse dynamics optimization. The kinematics and dynamics of the human model are expressed using the Denavit–Hartenberg (DH) representation. The lifting optimization formulation integrates the electromechanical dynamics of the DC motors in the exoskeletons of the knee, spine, and shoulder. The design variables for this study include human joint angle profiles and exoskeleton motor current profiles. The optimization objective is to minimize the squared normalized human joint torques, subject to physical and task-specific lifting constraints. We solve this optimization problem using the gradient-based optimizer SNOPT. Our results include a comparison of predicted human joint angle profiles, joint torque profiles, and ground reaction force (GRF) profiles between lifting tasks with and without exoskeleton assistance. We also explore various combinations of exoskeletons for the knee, spine, and shoulder. By resolving the lifting optimization problems, we designed the optimal torques for the exoskeletons located at the knee, spine, and shoulder. It was found that the support from the exoskeletons substantially lowers the torque levels in human joints. Additionally, we conducted experiments only on the knee exoskeleton. Experimental data indicated that using the knee exoskeleton decreases the muscle activation peaks by 35.00%, 10.03%, 22.12%, 30.14%, 16.77%, and 25.71% for muscles of the erector spinae, latissimus dorsi, vastus medialis, vastus lateralis, rectus femoris, and biceps femoris, respectively.more » « less
- 
            null (Ed.)Functional electrical stimulation (FES) is a potential technique for reanimating paralyzed muscles post neurological injury/disease. Several technical challenges including difficulty in measuring and compensating for delayed muscle activation levels inhibit its satisfactory control performance. In this paper, an ultrasound (US) imaging approach is proposed to measure delayed muscle activation levels under the implementation of FES. Due to low sampling rates of US imaging, a sampled data observer (SDO) is designed to estimate the muscle activation in a continuous manner. The SDO is combined with continuous-time dynamic surface control (DSC) approach that compensates for the electromechanical delay (EMD) in the tibialis anterior (TA) activation dynamics. The stability analysis based on the Lyapunov-Krasovskii function proves that the SDO-based DSC plus delay compensation (SDO-DSC-DC) approach achieves semi-global uniformly ultimately bounded (SGUUB) tracking performance. Simulation results on an ankle dorsiflexion neuromusculoskeletal system show the root mean square error (RMSE) of desired trajectory tracking is reduced by 19.77 % by using the proposed SDO-DSC-DC compared to the DSC-DC without the SDO. The findings provide potentials for rehabilitative devices, like powered exoskeleton and FES, to assist or enhance human limb movement based on the corresponding muscle activities in real-time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    