skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 3, 2026

Title: Hapt-Aids: Self-Powered, On-Body Haptics for Activity Monitoring
Wearables are becoming increasingly useful, primarily due to their activity-monitoring features that enable various healthcare applications. Everyday devices like smartwatches, however, often have complex ecosystems and convoluted interfaces. These devices need constant charging and can be difficult to use, cumbersome for users interested in only simple applications. As an alternative, simpler everyday wearable, we present Hapt-Aids, self-powered on-body tags that passively monitor user activities and deliver haptic notifications. Our small-footprint devices 1) harvest energy from activity-specific sources, 2) use this energy as sensor information, and 3) convert this energy into haptic actuation using only analog hardware, without digital components or firmware. This structurally simple, triple-purpose design makes our system extremely low maintenance while being cost- and energy-efficient, leading to a friendly user experience. We present our proof-of-concept system design: a custom, unique architecture formed through theoretical modeling and evaluation studies, and we build four demo applications. Through in-lab benchmark testing and user studies, we demonstrate the potential of Hapt-Aids as alternative low-cost, easy-to-use wearables.  more » « less
Award ID(s):
2228982
PAR ID:
10651816
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
9
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vibration is ubiquitous as a mode of haptic communication, and is used widely in handheld devices to convey events and notifications. The miniaturization of electromechanical actuators that are used to generate these vibrations has enabled designers to embed such actuators in wearable devices, conveying vibration at the wrist and other locations on the body. However, the rigid housings of these actuators mean that such wearables cannot be fully soft and compliant at the interface with the user. Fluidic textile-based wearables offer an alternative mechanism for haptic feedback in a fabric-like form factor. To our knowledge, fluidically driven vibrotactile feedback has not been demonstrated in a wearable device without the use of valves, which can only enable low-frequency vibration cues and detract from wearability due to their rigid structure. We introduce a soft vibrotactile wearable, made of textile and elastomer, capable of rendering high-frequency vibration. We describe our design and fabrication methods and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanical hysteresis. We demonstrate that the frequency and amplitude of vibration produced by our device can be varied based on changes in the input pressure, with 0.3 to 1.4 bar producing vibrations that range between 160 and 260 Hz at 13 to 38 g, the acceleration due to gravity. Our design allows for controllable vibrotactile feedback that is comparable in frequency and outperforms in amplitude relative to electromechanical actuators, yet has the compliance and conformity of fully soft wearable devices. 
    more » « less
  2. Haptic feedback offers a useful mode of communication in visually or auditorily noisy environments. The adoption of haptic devices in our everyday lives, however, remains limited, motivating research on haptic wearables constructed from materials that enable comfortable and lightweight form factors. Textiles, a material class fitting these needs and already ubiquitous in clothing, have begun to be used in haptics, but reliance on arrays of electromechanical controllers detracts from the benefits that textiles offer. Here, we mitigate the requirement for bulky hardware by developing a class of wearable haptic textiles capable of delivering high-resolution information on the basis of embedded fluidic programming. The designs of these haptic textiles enable tailorable amplitudinal, spatial, and temporal control. Combining these capabilities, we demonstrate wearables that deliver spatiotemporal cues in four directions with an average user accuracy of 87%. Subsequent demonstrations of washability, repairability, and utility for navigational tasks exemplify the capabilities of our approach. 
    more » « less
  3. Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction. 
    more » « less
  4. The increase of distributed embedded systems has enabled pervasive sensing, actuation, and information displays across buildings and surrounding environments, yet also entreats huge cost expenditure for energy and human labor for maintenance. Our daily interactions, from opening a window to closing a drawer to twisting a doorknob, are great potential sources of energy but are often neglected. Existing commercial devices to harvest energy from these ambient sources are unaffordable, and DIY solutions are left with inaccessibility for non-experts preventing fully imbuing daily innovations in end-users. We present E3D, an end-to-end fabrication toolkit to customize self-powered smart devices at low cost. We contribute to a taxonomy of everyday kinetic activities that are potential sources of energy, a library of parametric mechanisms to harvest energy from manual operations of kinetic objects, and a holistic design system for end-user developers to capture design requirements by demonstrations then customize augmentation devices to harvest energy that meets unique lifestyle. 
    more » « less
  5. We present CrazyJoystick, a flyable handheld joystick allowing seamless interaction methods to change between joystick and hand-tracking while displaying on-demand haptic feedback in extended reality (XR). Our system comprises a quadrotor that can autonomously approach the user when needed, addressing the limitations of conventional handheld and wearable devices that require continuous carrying throughout interactions. CrazyJoystick dynamically reallocates all thrust for haptic rendering during stationary states, eliminating the need to hover while delivering feedback. A customized cage allows users to grasp the device and interact with virtual objects, receiving 3.5 degree-of-freedom feedback. This novel transition method allows us to harvest the aerial mobility from multi-rotor based haptic devices, while having high force-to-weight ratios from being handheld during interaction. This paper describes the design and implementation of CrazyJoystick, evaluates its force and torque performance, and usability of the system in three VR applications. Our evaluation of torque rendering found that users can perceive the direction with an accuracy of 92.2%. User studies further indicated that the system significantly improves presence in VR environments. Participants found on-demand haptic feedback intuitive and enjoyable, emphasizing the potential of CrazyJoystick to redefine immersive interactions in XR through portable and adaptive feedback mechanisms. 
    more » « less