skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 21, 2026

Title: Tuning partial charges of alkyl alcohols to improve simulated fluid properties
Standard simulation interaction parameters sometimes predict liquid properties at variance with experiment, especially for polar liquids. In this work, we systematically scaled the partial charges of three alkyl alcohols to evaluate whether adjusting the partial charges, and thus the electrostatic interactions, can improve agreement with experimental values of key liquid properties, including the dielectric constant, vapor pressure, density, and self-diffusion coefficient. Changing the partial charges also affects liquid structures, which are evaluated through a hydrogen bond analysis. We found that modest adjustment factors applied to all partial charges improve values for computed properties, but too large an adjustment causes string-like aggregation of molecular dipoles and inhibits system dynamics.  more » « less
Award ID(s):
2404048
PAR ID:
10651921
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
15
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wetting experiments show pure graphene to be weakly hydrophilic, but its contact angle (CA) also reflects the character of the supporting material. Measurements and Molecular Dynamics simulations on suspended and supported graphene often reveal a CA reduction due to the presence of the supporting substrate. A similar reduction is consistently observed when graphene is wetted from both sides. The effect has been attributed to transparency to molecular interactions across the graphene sheet, however, the possibility of substrate-induced graphene polarization has also been considered. Computer simulations of CA on graphene have so far been determined by ignoring the material’s conducting properties. We improve the graphene model by incorporating its conductivity according to the Constant Applied Potential Molecular Dynamics. Using this method, we compare the wettabilities of suspended graphene and graphene supported by water by measuring the CA of cylindrical water drops on the sheets. The inclusion of graphene conductivity and concomitant polarization effects lead to a lower CA on suspended graphene but the CA reduction is significantly bigger when the sheets are also wetted from the opposite side. The stronger adhesion is accompanied by a profound change in the correlations among water molecules across the sheet. While partial charges on water molecules interacting across an insulator sheet attract charges of the opposite sign, apparent attraction among like charges is manifested across the conducting graphene. The change is associated with graphene polarization, as the image charges inside the conductor attract equally signed partial charges of water molecules on both sides of the sheet. Additionally, by using a non-polar liquid (diiodomethane), we affirm a detectable wetting translucency when liquid-liquid forces are dominated by dispersive interactions. Our findings are important for predictive modeling toward a variety of applications including sensors, fuel cell membranes, water filtration, and graphene-based electrode materials in high-performance supercapacitors. 
    more » « less
  2. null (Ed.)
    Abstract The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ  ≈ 0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is a good starting point for a systematic re-optimization of this important non-bonded term. 
    more » « less
  3. Modern crystallographic refinement methods treat each atom in a molecule as neutral with spherical electron density. Atoms, however, exhibit partial atomic charges arising from intramolecular forces via bonding. These partial charges are crucial for understanding electronic structure and bulk physical properties of molecules. Typically the polarity and polarizability of molecules are calculated using IR and Raman spectroscopy, respectively. While these techniques can be used on small molecules, fine elucidation of partial charges on individual atoms is still unrealized. Here we present crystallographic refinement developments that allow us to refine electron density around individual atoms to experimentally calculate partial atomic charges. Comparison between these experimentally calculated charges to theoretical quantum calculated charges will also be presented. 
    more » « less
  4. Of interest in understanding electronic structure, bulk physical properties, enthalpies of phase changes, dipole moments, and numerous other properties of molecules, is the determination of realistic partial atomic charges on atoms. Atoms may take on partial positive or negative charges due to polar covalent bonds, coordinate covalent bonds, or due to formal charges imposed by Lewis structure constraints. Traditional crystallographic refinement treats each atom as a neutral, spherical atom however. We present a ongoing developments of a mode of crystallographic model refinement that permits refinement of electron density at individual atoms in order to arrive at partial atomic charges of atoms in a crystallographic model. Comparison to calculated partial charges (CHELPG, NBO, Mulliken) from quantum calculations (DFT, MP2) in both the gas phase and crystalline state will be presented. 
    more » « less
  5. Derivation of partial charges in small and large scale molecular systems is important for modeling of various experimental and theoretical properties like dipole moments, auto-correlation functions, charge disparity, understanding of dispersion, benchmark of classical MD simulations and electrostatic potential energy surface mapping. A correspondence between theoretical calculations (based on single/small number of molecules) is usually established with macroscopic IR/Raman spectra or dipole moment measurements. Such comparisons are indirect and lack a fine mapping of electrostatic potential from theory to experiment. In a new approach developed as the experimental part of this work, partial charges are calculated from crystallographic model refinement. The experimental method exhibits a satisfactory correspondence with partial charges obtained using quantum chemistry calculations. Particularly, gas phase partial charges from CHELPG method and condensed phase Lowdin charges correlate well and validate this experimental method. 
    more » « less