Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining cold dark matter ( ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure and . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( ) for the two-parameter difference. We further obtain which is lower than the measurement at the level. The combined SPT cluster, DES , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit on the sum of neutrino masses. Assuming a model, we constrain the dark energy equation of state parameter and when combining with primary CMB anisotropies, we recover , a difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025
more »
« less
This content will become publicly available on October 22, 2026
The DECADE cosmic shear project IV: cosmological constraints from 107 million galaxies across 5,400 deg 2 of the sky
We present cosmological constraints from the Dark Energy Camera All Data Everywhere (DECADE) cosmic shear analysis. This work uses shape measurements for 107 million galaxies measured through Dark Energy Camera (DECam) imaging of deg of sky that is outside the Dark Energy Survey (DES) footprint. We derive constraints on the cosmological parameters and for the CDM model, which are consistent with those from other weak lensing surveys and from the cosmic microwave background. We combine our results with cosmic shear results from DES Y3 at the likelihood level, since the two datasets span independent areas on the sky. The combined measurements, which cover deg , prefer and under the CDM model. These results are the culmination of a series of rigorous studies that characterize and validate the DECADE dataset and the associated analysis methodologies (Anbajagane et. al 2025a,b,c). Overall, the DECADE project demonstrates that the cosmic shear analysis methods employed in Stage-III weak lensing surveys can provide robust cosmological constraints for fairly inhomogeneous datasets. This opens the possibility of using data that have been previously categorized as ``unusable’’ for cosmic shear analyses, thereby increasing the statistical power of upcoming weak lensing surveys.
more »
« less
- PAR ID:
- 10651935
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The Open Journal of Astrophysics
- Date Published:
- Journal Name:
- The Open Journal of Astrophysics
- Volume:
- 8
- ISSN:
- 2565-6120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report discovery and characterization of a main-sequence G star orbiting a dark object with mass . The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a ,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ; ) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit of , well above the Chandrasekhar limit. The Gaia inclination constraint, ,deg, then implies a companion mass of . The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity ( ) disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss ( ) and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio . The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.more » « less
-
We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination . The commonly used parameter is constrained to . In combination with baryon acoustic oscillation (BAO) measurements we find . We also present sound-horizon-independent estimates of the present day Hubble rate of from our large scale structure data alone and in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above , one of the tightest constraints in this redshift range and fully consistent with a cold dark matter ( ) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the model including massive neutrinos, spatial curvature, and dark energy. We find in flat at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations.more » « less
-
Recent radiation-thermochemical-magnetohydrodynamic simulations resolved formation of quasar accretion disks from cosmological scales down to ~300 gravitational radii , arguing they were ‘hyper-magnetized’ (plasma supported by toroidal magnetic fields) and distinct from traditional -disks. We extend these, refining to around a BH with multi-channel radiation and thermochemistry, and exploring a factor of 1000 range of accretion rates ( ). At smaller scales, we see the disks maintain steady accretion, thermalize and self-ionize, and radiation pressure grows in importance, but large deviations from local thermodynamic equilibrium and single-phase equations of state are always present. Trans-Alfvenic and highly-supersonic turbulence persists in all cases, and leads to efficient vertical mixing, so radiation pressure saturates at levels comparable to fluctuating magnetic and turbulent pressures even for . The disks also become radiatively inefficient in the inner regions at high . The midplane magnetic field remains primarily toroidal at large radii, but at super-Eddington we see occasional transitions to a poloidal-field dominated state associated with outflows and flares. Large-scale magnetocentrifugal and continuum radiation-pressure-driven outflows are weak at , but can be strong at . In all cases there is a scattering photosphere above the disk extending to at large , and the disk is thick and flared owing to magnetic support (with nearly independent of ), so the outer disk is strongly illuminated by the inner disk and most of the inner disk continuum scatters or is reprocessed at larger scales, giving apparent emission region sizes as large as .more » « less
-
Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.more » « less
An official website of the United States government
