skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Chemogenetic tuning reveals optimal MAPK signaling for cell-fate programming
Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined. Using a well-defined model of direct conversion, we examined how levels of the mitogen-activated protein kinase (MAPK)-activating oncogene HRASG12V influence direct conversion of primary fibroblasts to induced motor neurons. The rates of direct conversion respond biphasically to increasing HRASG12V levels. An optimal “Goldilocks” level of MAPK signaling efficiently drives cell-fate programming, whereas high levels of HRASG12V induce senescence. Through chemogenetic tuning, we set the optimal MAPK activity for high rates of conversion in the absence of HRAS mutants. In addition to proliferation, MAPK signaling influences conversion by regulating Ngn2 activity. Our results highlight the need to tune therapeutic interventions within a non-monotonic landscape that is shaped by genetics and levels of gene expression.  more » « less
Award ID(s):
2339986
PAR ID:
10651991
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cell Reports
Date Published:
Journal Name:
Cell Reports
Volume:
44
Issue:
9
ISSN:
2211-1247
Page Range / eLocation ID:
116226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MAPK signaling modules play crucial roles in regulating numerous biological processes in all eukaryotic cells. How MAPK signaling specificity and strength are tightly controlled remains a major challenging question. InArabidopsisstomatal development, the MAPKK Kinase YODA (YDA) functions at the cell periphery to inhibit stomatal production by activating MAPK 3 and 6 (MPK3/6) that directly phosphorylate stomatal fate-determining transcription factors for degradation in the nucleus. Recently, we demonstrated that BSL1, one of the four BSL protein phosphatases, localizes to the cell cortex to activate YDA, elevating MPK3/6 activity to suppress stomatal formation. Here, we showed that at the plasma membrane, all four members of BSL proteins contribute to the YDA activation. However, in the nucleus, specific BSL members (BSL2, BSL3, and BSU1) directly deactivate MPK6 to counteract the linear MAPK pathway, thereby promoting stomatal formation. Thus, the pivotal MAPK signaling in stomatal fate determination is spatially modulated by a signaling dichotomy of the BSL protein phosphatases inArabidopsis, providing a prominent example of how MAPK activities are integrated and specified by signaling compartmentalization at the subcellular level. 
    more » « less
  2. null (Ed.)
    In animals, the MAPK pathway is a network of genes that helps a cell to detect and then respond to an external signal by switching on or off a specific genetic program. In particular, cells use this pathway to communicate with each other. In an individual cell, the MAPK pathway shows fluctuations in activity over time. Mutations in the genes belonging to the MAPK pathway are often one of the first events that lead to the emergence of cancers. However, different mutations in the genes of the pathway can have diverse effects on a cell’s behavior: some mutations cause the cell to divide while others make it migrate. Recent research has suggested that these effects may be caused by changes in the pattern of MAPK signaling activity over time. Here, Aikin et al. used fluorescent markers to document how different MAPK mutations influence the behavior of a human breast cell and its healthy neighbors. The experiments showed that cells with different MAPK mutations behaved in one of two ways: the signaling quickly pulsed between high and low levels of activity, or it remained at a sustained high level. In turn, these two signaling patterns altered cell behavior in different ways. Pulsed signaling led to more cell division, while sustained signaling stopped division and increased migration. Aikin et al. then examined the effect of the MAPK mutations on neighboring healthy cells. Sustained signaling from the cancerous cell caused a wave of signaling activity in the surrounding cells. This led the healthy cells to divide and migrate toward the cancerous cell, pushing it out of the tissue layer. It is not clear if these changes protect against or promote cancer progression in living tissue. However, these results explain why specific cancer mutations cause different behaviors in cells. 
    more » « less
  3. Subtle changes in gene expression direct cells to distinct cellular states. Identifying and controlling dose-dependent transgenes require tools for precisely titrating expression. Here, we develop a highly modular, extensible framework called DIAL for building editable promoters that allow for fine-scale, heritable changes in transgene expression. Using DIAL, we increase expression by recombinase-mediated excision of spacers between the binding sites of a synthetic zinc finger transcription factor and the core promoter. By nesting varying numbers and lengths of spacers, DIAL generates a tunable range of unimodal setpoints from a single promoter. Through small-molecule control of transcription factors and recombinases, DIAL supports temporally defined, user-guided control of transgene expression that is extensible to additional transcription factors. Lentiviral delivery of DIAL generates multiple setpoints in primary cells and induced pluripotent stem cells. As promoter editing generates stable states, DIAL setpoints are heritable, facilitating mapping of transgene levels to phenotype and fate in direct conversion to induced motor neurons. The DIAL framework opens opportunities for tailoring transgene expression and improving the predictability and performance of gene circuits across diverse applications. 
    more » « less
  4. ABSTRACT Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated ‘The people behind the papers’ interview. 
    more » « less
  5. Abstract The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a key role in tumor progression and response to therapy. The dense PDAC stroma causes hypovascularity, which leads to hypoxia. Here, we showed that hypoxia drives long-lasting epithelial–mesenchymal transition (EMT) in PDAC primarily through a positive-feedback histone methylation–MAPK signaling axis. Transformed cells preferentially underwent EMT in hypoxic tumor regions in multiple model systems. Hypoxia drove a cell autonomous EMT in PDAC cells, which, unlike EMT in response to growth factors, could last for weeks. Furthermore, hypoxia reduced histone demethylase KDM2A activity, suppressed PP2 family phosphatase expression, and activated MAPKs to post-translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent EMT in which hypoxia-inducible factors played only a supporting role. Hypoxia-driven EMT could be antagonized in vivo by combinations of MAPK inhibitors. Collectively, these results suggest that hypoxia promotes durable EMT in PDAC by inducing a histone methylation–MAPK axis that can be effectively targeted with multidrug therapies, providing a potential strategy for overcoming chemoresistance. Significance:Integrated regulation of histone methylation and MAPK signaling by the low-oxygen environment of pancreatic cancer drives long-lasting EMT that promotes chemoresistance and shortens patient survival and that can be pharmacologically inhibited.See related commentary by Wirth and Schneider, p. 1739 
    more » « less