Abstract The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.
more »
« less
This content will become publicly available on August 20, 2026
Characterizing sigma donation and pi backbonding in molecular ‘corks’ on copper–palladium single-atom alloy surfaces
Molecular corking is a phenomenon where a molecule selectively binds to the catalytic atom of a single-atom alloy (SAA) and prevents the recombination of atomized gas molecules at the surface of a metal, functionally trapping them. A necessary feature of a molecular cork is strong, yet reversible binding and thermal stability. There is active experimental and theoretical research on potential candidates, which rank the viability of molecular corks based on their ability to donate electrons into sigma bonds and accept back-donation from the metal via pi bonding. This is often assessed experimentally and computationally using chemical shifts in NMR of selenium and phosphorus adducts as well as other metal complexes. A prime candidate for this purpose are N-heterocyclic carbenes (NHC). However, there have been few studies that perform bond decomposition analysis of periodic quantum mechanical calculations to qualify if the observed chemical shifts in NMR and binding strengths on metals are in fact due to sigma donation and pi back bonding. Moreover, the role of conformational flexibility plays in reported NMR chemical shifts is relatively unexplored. Using periodic vdW-DFT calculations and localized bonding MOs extracted from periodic plane-wave basis sets, along with molecular calculations, we seek to answer these questions for simple, but representative molecular systems bound to Cu-Pd SAA surfaces.
more »
« less
- Award ID(s):
- 2142874
- PAR ID:
- 10652033
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A fast, straightforward method for computing NMR chemical shieldings of crystalline solids is proposed. The method combines the advantages of both conventional approaches: periodic calculations using plane-wave basis sets and molecular computational approaches. The periodic calculations capture the periodic nature of crystalline solids, but the computational level of the electronic structure calculation is limited to general-gradient-approximation (GGA) density functionals. It is demonstrated that a correction to the GGA result calculated on an isolated molecule at a higher level of theory significantly improves the correlations between experimental and calculated chemical shifts while adding almost no additional computational cost. Corrections calculated with a hybrid density functional improved the accuracy of 13C, 15N and 17O chemical shift predictions significantly and allowed identifying errors in previously published experimental data. Applications of the approach to crystalline isocytosine, methacrylamide, and testosterone are presented.more » « less
-
Abstract Improving control over active‐site reactivity is a grand challenge in catalysis. Single‐atom alloys (SAAs) consisting of a reactive component doped as single atoms into a more inert host metal feature localized and well‐defined active sites, but fine tuning their properties is challenging. Here, a framework is developed for tuning single‐atom site reactivity by alloying in an additional inert metal, which this work terms an alloy‐host SAA. Specifically, this work creates about 5% Pd single‐atom sites in a Pd33Ag67(111) single crystal surface, and then identifies Sn based on computational screening as a suitable third metal to introduce. Subsequent experimental studies show that introducing Sn indeed modifies the electronic structure and chemical reactivity (measured by CO desorption energies) of the Pd sites. The modifications to both the electronic structure and the CO adsorption energies are in close agreement with the calculations. These results indicate that the use of an alloy host environment to modify the reactivity of single‐atom sites can allow fine‐tuning of catalytic performance and boost resistance against strong‐binding adsorbates such as CO.more » « less
-
Abstract The copper(I), silver(I), and gold(I) metals bind π‐ligands by σ‐bonding and π‐back bonding interactions. These interactions were investigated using bidentate ancillary ligands with electron donating and withdrawing substituents. The π‐ligands span from ethylene to larger terminal and internal alkenes and alkynes. Results of X‐ray crystallography, NMR, and IR spectroscopy and gas phase experiments show that the binding energies increase in the order Agmore » « less
-
Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction.more » « less
An official website of the United States government
