skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 7, 2026

Title: Tools for Understanding Molecular Orbitals Interactions of Molecules on Surfaces – Density Functional Theory Calculations of H2 Adsorbed on Cu(111) and Pd/Cu(111)
We provide a summary of contemporary computational tools utilized in the study of adsorbate interactions with solid-state materials from the perspective of a quantum chemist. This work contains a focused theoretical primer of interactions between the molecular orbitals of an adsorbate and the electronic bands of a solid as well as a review of the promising methodologies for disentangling these contributions. We apply these tools in a methodological fashion to density functional theory (DFT) calculations of molecular hydrogen (H2), H2 adsorbed to the pristine Cu(111) surface, and H2 adsorbed to a single atom alloy comprised of palladium and copper (Pd/Cu(111)) to provide chemically intuitive explanations of bonding in these systems.  more » « less
Award ID(s):
2142874
PAR ID:
10652154
Author(s) / Creator(s):
 ;  
Publisher / Repository:
ChemRxiv
Date Published:
Subject(s) / Keyword(s):
hydrogen storage surface corking single atom alloy surface chemistry surface-adsorbate interaction energy storage
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less
  2. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction. 
    more » « less
  3. We explore the charge transfer events four different classes of N-heterocyclic carbenes (NHCs) with a Pd/Cu(111) single atom alloy surface. We provide a frontier molecular orbital approach to understand similarities and differences between these systems. We demonstrate that this approach can be applied to the PDOS, COHP, and molecular charges to better understand the surface-adsorbate system. Density of This work emphasizes the composition- and geometry-dependent nature of NHC adsorption on SAAs and provides insights into tailoring these systems for catalytic and storage applications. 
    more » « less
  4. Comprehensive mapping of enantiospecific surface reactivity versus the crystallographic orientation of Cu( hkl ) surfaces vicinal to Cu(111) has been conducted using a spherically shaped single crystal on which the surface normal vectors, [ hkl ], span all possible orientations lying with 14° of the [111] direction. This has allowed direct measurement on 169 different Cu( hkl ) surfaces of the two rate constants, k (hkl)i and k (hkl)e, that determine the kinetics of the vacancy-mediated, explosive decomposition of tartaric acid (TA). The initiation rate constant, k (hkl)i, quantifies the kinetics of an initiation step that creates vacancies in the adsorbed TA monolayer. The explosion rate constant, k (hkl)e, quantifies the kinetics of a vacancy-mediated explosion step that results in TA decomposition and product desorption. Enantiospecificity is revealed by the dependence of TA decomposition kinetics on the chirality of the local surface orientation. Diastereomerism is demonstrated by the fact that d -TA is more reactive than l -TA on S surfaces while l -TA is more reactive on R surfaces. The time to reach half coverage, t (hkl)1/2, during isothermal TA decomposition at 433 K allowed determination of the most enantiospecific surface orientation; Cu(754). The ideal Cu(754) surface structure consists of (111) terraces separated by monoatomic steps formed by the (100) and (110) microfacets. 
    more » « less
  5. Abstract A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution. 
    more » « less