skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 5, 2026

Title: Different Rise Times of Atomic Br M 4,5 3d 3/2,5/2 Core Level Absorptions during Br 2 C 1 Π u 1 u State Dissociation via Extreme Ultraviolet Transient Absorption Spectroscopy
The reported “dissociation times” for the Br2 C (1Πu 1u) state by various measurement methods differ widely across the literature (30 to 340 fs). We consider this issue by investigating attosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the Br M4,5 3d3/2,5/2 edges (66 to 80 eV), tracking core-to-valence (3d → 4p) and core-to-Rydberg (3d → ns, np, n ≥ 5) transitions from the molecular to atomic limit. The progress of dissociation can be ascertained by the buildup of the atomic absorption in time. Notably, the measured rise times of the 3d5/2, 3/2 → 4p transitions depend on the probed core level final state, 38 ± 1 and 20 ± 5 fs for 2D5/2 and 2D3/2 at 64.31 and 65.34 eV, respectively. Simulations by the nuclear time-dependent Schrödinger equation reproduce the rise-time difference of the 3d → 4p transitions, and the theory suggests several important factors. One is the transition dipole moments of each probe transition have different molecular and atomic values for 2D5/2 versus 2D3/2 that depend on the bond length. The other is the merger of multiple molecular absorptions into the same atomic absorption, creating multiple timescales even for a single probe transition. Unfortunately, the core-to-Rydberg absorptions did not allow accurate atomic Br buildup times to be extracted due to spectral overlaps with ground state bleaching, otherwise an even more comprehensive picture of the role of the probe state transition would be possible. This work shows that the measured probe signals accurately contain the dissociative wavepacket dynamics but also reveal how the specific probe transition affects the apparent progress toward dissociation with bond length. Such potential probe-transition-dependent effects need to be considered when interpreting measured signals and their timescales.  more » « less
Award ID(s):
2243756
PAR ID:
10652206
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society, J. Phys. Chem. A
Date Published:
Journal Name:
The Journal of Physical Chemistry A
ISSN:
1089-5639
Subject(s) / Keyword(s):
laser, attosecond, bromine, dissociation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrafast X-ray/XUV transient absorption spectroscopy is a powerful tool for real-time probing of chemical dynamics. Interpretation of the transient absorption spectra requires knowledge of core-excited potentials, which necessitates assistance from high-level electronic-structure computations. In this study, we investigate Br-3d core-excited electronic structures of hydrogen bromide (HBr) using spin-orbit general multiconfigurational quasidegenerate perturbation theory (SO-GMC-QDPT). Potential energy curves and transition dipole moments are calculated from the Franck-Condon region to the asymptotic limit and used to construct core-to-valence absorption strengths for five electronic states of HBr (Σ10+, 3Π1, 1Π1, 3Π0+, 3Σ1) and two electronic states of HBr+ (2Π3∕2, 2Σ1∕2). The results illustrate the capabilities of Br-3d edge probing to capture transitions of the electronic-state symmetry as well as nonadiabatic dissociation processes that evolve across avoided crossings. Furthermore, core-to-valence absorption spectra are simulated from the neutral Σ10+ state and the ionic Π21/2,3/2 states by numerically solving the time-dependent Schrödinger equation and exhibit excellent agreement with the experimental spectrum. The comprehensive and quantitative picture of the core-excited states obtained in this work allows for transparent analysis of the core-to-valence absorption signals, filling gaps in the theoretical understanding of the Br-3d transient absorption spectra. 
    more » « less
  2. X-ray Transient Absorption Spectroscopy (XTAS) and theoretical calculations are used to study CCl 4 + prepared by 800 nm strong-field ionization. XTAS simultaneously probes atoms at the carbon K-edge (280–300 eV) and chlorine L-edge (195–220 eV). Comparison of experiment to X-ray spectra computed by orbital-optimized density functional theory (OO-DFT) indicates that after ionization, CCl 4 + undergoes symmetry breaking driven by Jahn–Teller distortion away from the initial tetrahedral structure (T d ) in 6 ± 2 fs. The resultant symmetry-broken covalently bonded form subsequently separates to a noncovalently bound complex between CCl 3 + and Cl over 90 ± 10 fs, which is again predicted by theory. Finally, after more than 800 fs, L-edge signals for atomic Cl are observed, indicating dissociation to free CCl 3 + and Cl. The results for Jahn–Teller distortion to the symmetry-broken form of CCl 4 + and formation of the Cl–CCl+3 complex characterize previously unobserved new species along the route to dissociation. 
    more » « less
  3. null (Ed.)
    Coincidence ion pair production (cipp) spectra of F 2 were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975–126 210 cm −1 . The F + + F − signal shows a rotational band head structure, corresponding to F 2 Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F 2 **): one Π and four Σ states. The lowest-energy Rydberg state spectrum observed ( T 0 = 125 999 cm −1 ) lacked some of the predicted rotational structure, which allowed an accurate determination of the ion pair production threshold of 15.6229 4 ± 0.0004 3 eV. Using the well-known atomic fluorine ionization energy and electron affinity, this number leads to a ground state F–F dissociation energy of 1.6012 9 ± 0.0004 4 eV. Photoelectron photoion coincidence (PEPICO) experiments were also carried out on F 2 and the dissociative photoionization threshold to F + + F was determined as 19.0242 ± 0.0006 eV. Using the atomic fluorine ionization energy, this can be converted to an F 2 dissociation energy of 1.6013 2 ± 0.0006 2 eV, further confirming the cipp-derived value above. Because the two experiments were independently energy-calibrated, they can be averaged to 1.6013 0 ± 0.0003 6 eV and this value can be used to derive the fluorine atom's 0 K heat of formation as 77.25 1 ± 0.01 7 kJ mol −1 . This latter is in excellent agreement with the latest Active Thermochemical Table (ATcT) value but improves its accuracy by almost a factor of three. 
    more » « less
  4. The photoelectron (PE) spectra of C6F5X– (X = Cl, Br, I) and computational results on the anions and neutrals are presented and compared to previously reported results on C6F6– [McGee, C. J. J. Phys. Chem. A 2023, 127, 8556–8565.]. The spectra all exhibit broad, vibrationally unresolved detachment transitions, indicating that the equilibrium structures of the anions are significantly different from the neutrals. The PE spectrum of C6F5Cl– exhibits a parallel photoelectron angular distribution (PAD), similar to that of the previously reported C6F6– spectrum, while the PE spectra of C6F5Br– and C6F5I– have isotropic PADs, and also exhibit a prominent X– PE feature due to photodissociation of C6F5X– resulting in X– formation. Identification of the C6F5X– detachment transition origins, which is equivalent to the neutral electron affinity (EA), in all three cases is difficult, since the broadness of the detachment feature is accompanied by vanishingly small detachment cross section near the origin. Upper limits on the EAs were determined to be 1.70 eV for C6F5Cl, 2.10 eV for C6F5Br, and 2.00 eV for C6F5I, all significantly higher than the 0.76 eV upper limit determined for C6F6 with the same experiment. The broad detachment transitions are consistent with computational results, which predict very large differences between the neutral and anionic C–X (X = Cl, Br, I) bond lengths. Based on differences between the MBIS atom charges in the anions and neutrals, the excess charge in the anion is on the unique C atom and X, in contrast to the nonplanar C2v structured C6F6– anion, for which the charge is delocalized over the molecule. In C6F5Cl–, the C–Cl bond is predicted to be bent out of the plane, while both C6F5Br– and C6F5I– are predicted to be planar on average. The impact of the interruption of the symmetry in the hexafluorobenzene neutral and anion on the molecular and electronic structure of C6F5X/C6F5X– is considered, as well as the possible dissociative state leading to X– (X = Br, I) formation, and the nature of the C–X bond. 
    more » « less
  5. Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. 
    more » « less