ABSTRACT The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories ofhand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to postnatal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
more »
« less
This content will become publicly available on November 15, 2026
The ratio of Wnt signaling activity to Sox2 transcription factor levels predicts neuromesodermal fate potential
ABSTRACT Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic zebrafish reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue. We used this unique signature to identify the previously unknown anatomical position of a progenitor population that gives rise to midline tissues of the floor plate of the spinal cord and the mesodermal notochord. Thus, quantification of the active Wnt signaling to Sox2 ratio can be used to predict and identify cells with neuromesodermal potential. We also developed the auxin-inducible 2 degron system for use in zebrafish to test the temporal role that Sox2 plays during midline formation. We found that ectopic Sox2 in the presence of Wnt activity holds cells in the undifferentiated floor plate/notochord progenitor state, and that degradation of the ectopic Sox2 is required for cells to adopt a notochord fate.
more »
« less
- Award ID(s):
- 2028424
- PAR ID:
- 10652258
- Publisher / Repository:
- Company of Biologists
- Date Published:
- Journal Name:
- Development
- Volume:
- 152
- Issue:
- 22
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundThe spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. ResultsWe analyzed the expression ofaurkb,foxb1a,foxb1b,her8a,homeza,ivns1abpb,mybl2b,myt1a,nr2f1b,onecut1,sall1a,sall3a,sall3b,sall4,sox2,sox19b,sp8b,tsc22d1,wdhd1,zfhx3b,znf804a, andznf1032in wild‐type andMIB E3 ubiquitin protein ligase 1zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post‐mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. ConclusionsOur data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.more » « less
-
Axon pathfinding and neuronal migration are orchestrated by attractive and repulsive guidance cues. In the mouse spinal cord, repulsion from Slit proteins through Robo family receptors and attraction to Netrin-1, mediated by the receptor DCC, control many aspects of neural circuit formation. This includes motor neuron wiring, where Robos help prevent both motor neuron cell bodies and axons from aberrantly crossing the spinal cord midline. These functions had been ascribed to Robo signaling being required to counter DCC-mediated attraction to Netrin-1 at the midline, either by mediating repulsion from midline-derived Slits or by silencing DCC signaling. However, the role of DCC in promoting motor neuron and axon midline crossing had not been directly tested. Here, we usedin vivomouse genetics andin vitroaxon turning assays to further explore the interplay between Slit and Netrin signaling in motor neuron migration and axon guidance relative to the midline. We find that DCC is a major driver of midline crossing by motor axons, but not motor neuron cell bodies, whenRobo1andRobo2are knocked out. Further,in vitroresults indicate that Netrin-1 attracts motor axons and that Slits can modulate the chemotropic response to Netrin-1, converting it from attraction to repulsion. Our findings indicate that Robo signaling allows both motor neuron cell bodies and axons to avoid the midline, but that only motor axons require this pathway to antagonize DCC-dependent midline attraction, which likely involves a combination of mediating Slit repulsion and directly influencing Netrin-DCC signaling output.more » « less
-
Martin, Allan R. (Ed.)Cellular differentiation is a tightly regulated process under the control of intricate signaling and transcription factors interaction network working in coordination. These interactions make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord, recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors regulate neural maturation by directing the activity of a transcription factor network that contains CDX at its core. Here we have used partial and ordinary (Hill) differential equation based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the CDX/transcription factor networks, alone and in combination. We show that in both networks, the strength of interaction among network partners impacts the dynamics, behavior and output of the system. In the signaling network, interaction strength determine the position and size of discrete regions of cell differentiation and small changes in the strength of the interactions among networking partners can result in a signal overriding, balancing or oscillating with another signal. We also show that the spatiotemporal information generated by the signaling network can be conveyed to the CDX/transcription network to produces a transition zone that separates regions of high cell potency from regions of cell differentiation, in agreement with most in vivo observations. Importantly, one emerging property of the networks is their robustness to extrinsic disturbances, which allows the system to retain or canalize NP cells in developmental trajectories. This analysis provides a model for the interaction conditions underlying spinal cord cell maturation during embryonic axial elongation.more » « less
-
null (Ed.)Ladybird homeobox (Lbx) transcription factors have crucial functions in muscle and nervous system development in many animals. Amniotes have two Lbx genes, but only Lbx1 is expressed in spinal cord. In contrast, teleosts have three lbx genes and we show here that zebrafish lbx1a, lbx1b and lbx2 are expressed by distinct spinal cell types, and that lbx1a is expressed in dI4, dI5 and dI6 interneurons, as in amniotes. Our data examining lbx expression in Scyliorhinus canicula and Xenopus tropicalis suggest that the spinal interneuron expression of zebrafish lbx1a is ancestral, whereas lbx1b has acquired a new expression pattern in spinal cord progenitor cells. lbx2 spinal expression was probably acquired in the ray-finned lineage, as this gene is not expressed in the spinal cords of either amniotes or S. canicula. We also show that the spinal function of zebrafish lbx1a is conserved with mouse Lbx1. In zebrafish lbx1a mutants, there is a reduction in the number of inhibitory spinal interneurons and an increase in the number of excitatory spinal interneurons, similar to mouse Lbx1 mutants. Interestingly, the number of inhibitory spinal interneurons is also reduced in lbx1b mutants, although in this case the number of excitatory interneurons is not increased. lbx1a;lbx1b double mutants have a similar spinal interneuron phenotype to lbx1a single mutants. Taken together these data suggest that lbx1b and lbx1a may be required in succession for correct specification of dI4 and dI6 spinal interneurons, although only lbx1a is required for suppression of excitatory fates in these cells.more » « less
An official website of the United States government
