skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Composite asymmetric dark matter with a dark photon portal: Multimessenger tests
Composite asymmetric dark matter (ADM) is the framework that naturally explains the coincidence of the baryon density and the dark matter density of the Universe. Through a portal interaction sharing particle-antiparticle asymmetries in the Standard Model and dark sectors, dark matter particles, which are dark-sector counterparts of baryons, can decay into antineutrinos and dark-sector counterparts of mesons (dark mesons) or dark photon. Subsequent cascade decay of the dark mesons and the dark photon can also provide electromagnetic fluxes at late times of the Universe. The cosmic-ray constraints on the decaying dark matter with the mass of 1–10 GeV has not been well studied. We perform comprehensive studies on the decay of the composite ADM by combining the astrophysical constraints from e ± and γ ray. The constraints from cosmic-ray positron measurements by AMS-02 are the most stringent at 2 GeV : a lifetime should be larger than the order of 10 26 s , corresponding to the cutoff scale of the portal interaction of about 10 8 10 9 GeV . We also perform the dedicated analysis for the neutrino monoenergetic signals at Super-Kamiokande and Hyper-Kamiokande due to the atmospheric neutrino background in the energy range of our interest.  more » « less
Award ID(s):
2108466 2108467 2308021
PAR ID:
10652353
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
112
Issue:
1
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θ m between active and sterile neutrinos must satisfy, roughly, θ m 1.5 × 10 6 ( M X / 10 9 GeV ) 2 for a mass M X of the dark-matter particle between 10 8 GeV and 10 11 GeV . Published by the American Physical Society2024 
    more » « less
  2. Ultrahigh-energy neutrinos ( UHE ν s) can be used as a valuable probe of superheavy dark matter above 10 9 GeV , the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of UHE ν s with the lunar regolith enables us to explore energies beyond 10 12 GeV , which astrophysical accelerators cannot achieve. Taking into account the interaction of UHE ν s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at 10 12 GeV . The limits are complementary to or even stronger than those from other UHE ν detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. 
    more » « less
  3. We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single e rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of 1.3 kg day . DM interactions in the skipper charge-coupled devices (CCDs) are searched for as groups of two or three adjacent pixels with a total charge between 2 and 4 e . We find 144 candidates of 2 e and 1 candidate of 4 e , where 141.5 and 0.071, respectively, are expected from background. With no evidence of a DM signal, we place stringent constraints on DM particles with masses between 1 and 1000 MeV / c 2 interacting with electrons through an ultralight or heavy mediator. For large ranges of DM masses below 1    GeV / c 2 , we exclude theoretically motivated benchmark scenarios where hidden-sector particles are produced as a major component of DM in the Universe through the freeze-in or freeze-out mechanisms. 
    more » « less
  4. We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2 × 10 20 protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce π 0 and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A . A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter ϵ 2 as a function of the dark-photon mass in the range 10 M A 400 MeV . The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles χ for two benchmark models with mass ratios M χ / M A = 0.6 and 2 and for dark fine-structure constants 0.1 α D 1 . Published by the American Physical Society2024 
    more » « less
  5. In a recent publication we studied the decay rate of primordial black holes perceiving the dark dimension, an innovative five-dimensional (5D) scenario that has a compact space with characteristic length scale in the micron range. We demonstrated that the rate of Hawking radiation of 5D black holes slows down compared to 4D black holes of the same mass. Armed with our findings we showed that for a species scale of O ( 10 10 GeV ) , an all-dark-matter interpretation in terms of primordial black holes should be feasible for black hole masses in the range 10 14 M / g 10 21 . As a natural outgrowth of our recent study, herein we calculate the Hawking evaporation of near-extremal 5D black holes. Using generic entropy arguments we demonstrate that Hawking evaporation of higher-dimensional near-extremal black holes proceeds at a slower rate than the corresponding Schwarzschild black holes of the same mass. Assisted by this result we show that if there were 5D primordial near-extremal black holes in nature, then a primordial black hole all-dark-matter interpretation would be possible in the mass range 10 5 β M / g 10 21 , where β is a parameter that controls the difference between mass and charge of the associated near-extremal black hole. Published by the American Physical Society2024 
    more » « less