skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A High‐Precision Analytical Technique for Dissolved N 2 Isotopes in Aquatic Systems: Biogeochemical Applications and Determination of Solubility Equilibrium Isotope Effects
ABSTRACT RationaleThe isotopic composition of dissolved dinitrogen gas (δ15N‐N2) in water can offer a powerful constraint on the sources and pathways of nitrogen cycling in aquatic systems. However, because of the large presence of atmosphere‐derived dissolved N2in these systems, high‐precision (on the order of 0.001‰) measurements of N2isotopes paired with inert gas measurements are required to disentangle atmospheric and biogeochemical signals. Additionally, the solubility equilibrium isotope fractionation of N2and its temperature and salinity dependence are underconstrained at this level of precision. MethodsWe introduce a new technique for sample collection, processing, and dynamic dual‐inlet mass spectrometry allowing for high‐precision measurement of δ15N‐N2and δ(N2/Ar) with simultaneous measurement of δ(40Ar/36Ar) and δ(Kr/N2) in water. We evaluate the reproducibility of this technique and employ it to redetermine the solubility equilibrium isotope effects for dissolved N2across a range of temperatures and salinities. ResultsOur technique achieves measurement reproducibility (1σ) for δ15N‐N2(0.006‰) and δ(N2/Ar) (0.41‰) suitable for tracing biogeochemical nitrogen cycling in aquatic environments. Through a series of air–water equilibration experiments, we find a N2solubility equilibrium isotope effect (ε = α/1000 − 1, where α = (29N2/28N2)dissolved/(29N2/28N2)gas) in water of ε(‰) = 0.753 − 0.004•TwhereTis the temperature (°C), with uncertainties on the order of 0.001‰ over the temperature range of ~2°C–23°C and salinity range of ~0–30 psu. We find no apparent dependence of ε on salinity. ConclusionsOur new method allows for high‐precision measurements of the isotopic composition of dissolved N2and Ar, and dissolved N2/Ar and Kr/N2ratios, within the same sample. Pairing measurements of N2with inert gases facilitates the quantification of excess N2from biogeochemical sources and its isotopic composition. This method allows for a wide range of applications in marine, coastal, and freshwater environments to characterize and quantitatively constrain potential nitrogen‐cycling sources and pathways and to differentiate between physical and biological isotope signals in these systems.  more » « less
Award ID(s):
2122427
PAR ID:
10652362
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Rapid Communications in Mass Spectrometry
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
39
Issue:
19
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The stable isotope ratio of dissolved inorganic carbon (δ13C‐DIC) is a valuable tracer for investigating carbon cycling in aquatic environments. However, its potential remains underutilized due to limited data availability. Fewer than 15% of cruise samples are analyzed forδ13C‐DIC, as isotope analysis using isotope ratio mass spectrometry is labor‐intensive and restricted to onshore laboratories. We present over 3500δ13C‐DIC measurements from the 2023 Global Ocean Ship‐based Hydrographic Investigations Program A16N cruise in the North Atlantic. Notably, three‐quarters of these measurements were conducted onboard using a CO2extraction device coupled with cavity ring‐down spectroscopy, a more efficient and cost‐effective method. This extensive dataset providesδ13C‐DIC values with spatial resolution comparable to other ocean carbonate chemistry and biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2uptake and storage, and may facilitate the development of algorithms to estimateδ13C‐DIC in under sampled regions. 
    more » « less
  2. Abstract Agriculture is the dominant source of anthropogenic nitrous oxide (N2O) –a greenhouse gas and a stratospheric ozone depleting substance. The US Corn Belt is a large global N2O source, but there remain large uncertainties regarding its source attribution and biogeochemical pathways. Here, we interpret high frequency stable N2O isotope observations from a very tall tower to improve our understanding of regional source attribution. We detected significant seasonal variability in δ15Nbulk(6.47–7.33‰) and the isotope site preference (δ15NSP = δ15Nα–δ15Nβ, 18.22–25.19‰) indicating a predominance of denitrification during the growing period but of nitrification during the snowmelt period. Isotope mixing models and atmospheric inversions both indicate that indirect emissions contribute substantially (>35%) to total N2O emissions. Despite the relatively large uncertainties, the upper bound of bottom‐up indirect emission estimates are at the lower bound of the isotopic constraint, implying significant discrepancies that require further investigation. 
    more » « less
  3. Abstract Trophic ecology and resource use are challenging to discern in migratory marine species, including sharks. However, effective management and conservation strategies depend on understanding these life history details. Here we investigate whether dental enameloid zinc isotope (δ66Znen) values can be used to infer intrapopulation differences in foraging ecology by comparing δ66Znenwith same-tooth collagen carbon and nitrogen (δ13Ccoll, δ15Ncoll) values from critically endangered sand tiger sharks (Carcharias taurus) from Delaware Bay (USA). We document ontogeny and sex-related isotopic differences indicating distinct diet and habitat use at the time of tooth formation. Adult females have the most distinct isotopic niche, likely feeding on higher trophic level prey in a distinct habitat. This multi-proxy approach characterises an animal’s isotopic niche in greater detail than traditional isotope analysis alone and shows that δ66Znenanalysis can highlight intrapopulation dietary variability thereby informing conservation management and, due to good δ66Znenfossil tooth preservation, palaeoecological reconstructions. 
    more » « less
  4. Abstract Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets. 
    more » « less
  5. The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.e., the relative solubilities of noble gas isotopes) and their sensitivities to the temperature and salinity. Here, we carry out a suite of classical molecular dynamics (MD) simulations and employ the theoretical method of quantum correction to estimate SEIEs for comparison with experimental observations. We find that classical MD simulations can accurately predict SEIEs for the isotopes of Ar, Kr, and Xe to order 0.01‰, on the scale of analytical uncertainty. However, MD simulations consistently overpredict the SEIEs of Ne and He by up to 40% of observed values. We carry out sensitivity tests at different temperatures, salinities, and pressures and employ different sets of interatomic potential parameters and water models. For all noble gas isotopes, the TIP4P water model is found to reproduce observed SEIEs more accurately than the SPC/E and TIP4P/ice models. Classical MD simulations also accurately capture the sign and approximate magnitude of temperature and salinity sensitivities of SEIEs for heavy noble gases. We find that experimental and modeled SEIEs generally follow an inverse-square mass dependence, which implies that the mean-square force experienced by a noble gas atom within a solvation shell is similar for all noble gases. This inverse-square mass proportionality is nearly exact for Ar, Kr, and Xe isotopes, but He and Ne exhibit a slightly weaker mass dependence. We hypothesize that the apparent dichotomy between He–Ne and Ar–Kr–Xe SEIEs may result from atomic size differences, whereby the smaller noble gases are more likely to spontaneously fit within cavities of water without breaking water–water H-bonds, thereby experiencing softer collisions during translation within a solvation shell. We further speculate that the overprediction of simulated He and Ne SEIEs may result from the neglection of higher-order quantum corrections or the overly stiff representation of van der Waals repulsion by the widely used Lennard-Jones 6–12 potential model. We suggest that new measurements of SEIEs of heavy and light noble gases may represent a novel set of constraints with which to refine hydrophobic solvation theories and optimize the set of interatomic potential models used in MD simulations of water and noble gases. 
    more » « less