Multi-modal single cell RNA assays capture RNA content as well as other data modalities, such as spatial cell position or the electrophysiological properties of cells. Compared to dedicated scRNA-seq assays however, they may unintentionally capture RNA from multiple adjacent cells, exhibit lower RNA sequencing depth compared to scRNA-seq, or lack genome-wide RNA measurements. We present scProjection, a method for mapping individual multi-modal RNA measurements to deeply sequenced scRNA-seq atlases to extract cell type-specific, single cell gene expression profiles. We demonstrate several use cases of scProjection, including the identification of spatial motifs from spatial transcriptome assays, distinguishing RNA contributions from neighboring cells in both spatial and multi-modal single cell assays, and imputing expression measurements of un-measured genes from gene markers. scProjection therefore combines the advantages of both multi-modal and scRNA-seq assays to yield precise multi-modal measurements of single cells.
more »
« less
This content will become publicly available on October 21, 2026
CellCover Defines Marker Gene Panels Capturing Developmental Progression in Neocortical Neural Stem Cell Identity
Definition of cell classes across the tissues of living organisms is central in the analysis of growing atlases of single-cell RNA sequencing (scRNA-seq) data across biomedicine. Marker genes for cell classes are most often defined by differential expression (DE) methods that serially assess individual genes across landscapes of diverse cells. This serial approach has been extremely useful, but is limited because it ignores possible redundancy or complementarity across genes that can only be captured by analyzing multiple genes simultaneously. Interrogating binarized expression data, we aim to identify discriminating panels of genes that are specific to, not only enriched in, individual cell types. To efficiently explore the vast space of possible marker panels, leverage the large number of cells often sequenced, and overcome zero-inflation in scRNA-seq data, we propose viewing marker gene panel selection as a variation of the “minimal set-covering problem” in combinatorial optimization. Using scRNA-seq data from blood and brain tissue, we show that this new method, CellCover, performs as good or better than DE and other methods in defining cell-type discriminating gene panels, while reducing gene redundancy and capturing cell-class-specific signals that are distinct from those defined by DE methods. Transfer learning experiments across mouse, primate, and human data demonstrate that CellCover identifies markers of conserved cell classes in neocortical neurogenesis, as well as developmental progression in both progenitors and neurons. Exploring markers of human outer radial glia (oRG, or basal RG) across mammals, we show that transcriptomic elements of this key cell type in the expansion of the human cortex likely appeared in gliogenic precursors of the rodent before the full program emerged in neurogenic cells of the primate lineage. We have assembled the public datasets we use in this report within the NeMO Analytics multi-omic data exploration environment [1], where the expression of individual genes (NeMO: Individual genes in cortex and NeMO: Individual genes in blood) and marker gene panels (NeMO: Telley 3 CellCover Panels, NeMO: Telley 12 CellCover Panels, NeMO: Sorted Brain Cell CellCover Panels, and NeMO: Blood 34 CellCover Panels) can be freely explored without coding expertise. CellCover is available in CellCover R and CellCover Python.
more »
« less
- Award ID(s):
- 2124230
- PAR ID:
- 10652368
- Publisher / Repository:
- eLife
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The selection of marker gene panels is critical for capturing the cellular and spatial heterogeneity in the expanding atlases of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data. Most current approaches to marker gene selection operate in a label-based framework, which is inherently limited by its dependency on predefined cell type labels or clustering results. In contrast, existing label-free methods often struggle to identify genes that characterize rare cell types or subtle spatial patterns, and they frequently fail to scale efficiently with large data sets. Here, we introduce geneCover, a label-free combinatorial method that selects an optimal panel of minimally redundant marker genes based on gene-gene correlations. Our method demonstrates excellent scalability to large data sets and identifies marker gene panels that capture distinct correlation structures across the transcriptome. This allows geneCover to distinguish cell states in various tissues of living organisms effectively, including those associated with rare or otherwise difficult-to-identify cell types. We evaluate the performance of geneCover across various scRNA-seq and spatial transcriptomics data sets, comparing it to other label-free algorithms to highlight its utility and potential in diverse biological contexts.more » « less
-
When analyzing scRNA-seq data with clustering algorithms, annotating the clusters with cell types is an essential step toward biological interpretation of the data. Annotations can be performed manually using known cell type marker genes. Annotations can also be automated using knowledge-driven or data-driven machine learning algorithms. Majority of cell type annotation algorithms are designed to predict cell types for individual cells in a new dataset. Since biological interpretation of scRNA-seq data is often made on cell clusters rather than individual cells, several algorithms have been developed to annotate cell clusters. In this study, we compared five cell type annotation algorithms, Azimuth, SingleR, Garnett, scCATCH, and SCSA, which cover the spectrum of knowledge-driven and data-driven approaches to annotate either individual cells or cell clusters. We applied these five algorithms to two scRNA-seq datasets of peripheral blood mononuclear cells (PBMC) samples from COVID-19 patients and healthy controls, and evaluated their annotation performance. From this comparison, we observed that methods for annotating individual cells outperformed methods for annotation cell clusters. We applied the cell-based annotation algorithm Azimuth to the two scRNA-seq datasets to examine the immune response during COVID-19 infection. Both datasets presented significant depletion of plasmacytoid dendritic cells (pDCs), where differential expression in this cell type and pathway analysis revealed strong activation of type I interferon signaling pathway in response to the infection.more » « less
-
Abstract Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell–cell communications are then obtained by “optimally transporting” signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene–gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell–cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues.more » « less
-
Single-cell RNA-sequencing (scRNA-seq) enables high throughput measurement of RNA expression in individual cells. Due to technical limitations, scRNA-seq data often contain zero counts for many transcripts in individual cells. These zero counts, or dropout events, complicate the analysis of scRNA-seq data using standard analysis methods developed for bulk RNA-seq data. Current scRNA-seq analysis methods typically overcome dropout by combining information across cells, leveraging the observation that cells generally occupy a small number of RNA expression states. We introduce netNMF-sc, an algorithm for scRNA-seq analysis that leverages information across both cells and genes. netNMF-sc combines network-regularized non-negative matrix factorization with a procedure for handling zero inflation in transcript count matrices. The matrix factorization results in a low-dimensional representation of the transcript count matrix, which imputes gene abundance for both zero and non-zero entries and can be used to cluster cells. The network regularization leverages prior knowledge of gene-gene interactions, encouraging pairs of genes with known interactions to be close in the low-dimensional representation. We show that netNMF-sc outperforms existing methods on simulated and real scRNA-seq data, with increasing advantage at higher dropout rates (e.g. above 60%). Furthermore, we show that the results from netNMF-sc -- including estimation of gene-gene covariance -- are robust to choice of network, with more representative networks leading to greater performance gains.more » « less
An official website of the United States government
