skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Label-free selection of marker genes in single-cell and spatial transcriptomics with geneCover
The selection of marker gene panels is critical for capturing the cellular and spatial heterogeneity in the expanding atlases of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data. Most current approaches to marker gene selection operate in a label-based framework, which is inherently limited by its dependency on predefined cell type labels or clustering results. In contrast, existing label-free methods often struggle to identify genes that characterize rare cell types or subtle spatial patterns, and they frequently fail to scale efficiently with large data sets. Here, we introduce geneCover, a label-free combinatorial method that selects an optimal panel of minimally redundant marker genes based on gene-gene correlations. Our method demonstrates excellent scalability to large data sets and identifies marker gene panels that capture distinct correlation structures across the transcriptome. This allows geneCover to distinguish cell states in various tissues of living organisms effectively, including those associated with rare or otherwise difficult-to-identify cell types. We evaluate the performance of geneCover across various scRNA-seq and spatial transcriptomics data sets, comparing it to other label-free algorithms to highlight its utility and potential in diverse biological contexts.  more » « less
Award ID(s):
2124230
PAR ID:
10652369
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cold Spring Harbor
Date Published:
Journal Name:
Genome Research
Volume:
35
Issue:
12
ISSN:
1088-9051
Page Range / eLocation ID:
2744 to 2755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Definition of cell classes across the tissues of living organisms is central in the analysis of growing atlases of single-cell RNA sequencing (scRNA-seq) data across biomedicine. Marker genes for cell classes are most often defined by differential expression (DE) methods that serially assess individual genes across landscapes of diverse cells. This serial approach has been extremely useful, but is limited because it ignores possible redundancy or complementarity across genes that can only be captured by analyzing multiple genes simultaneously. Interrogating binarized expression data, we aim to identify discriminating panels of genes that are specific to, not only enriched in, individual cell types. To efficiently explore the vast space of possible marker panels, leverage the large number of cells often sequenced, and overcome zero-inflation in scRNA-seq data, we propose viewing marker gene panel selection as a variation of the “minimal set-covering problem” in combinatorial optimization. Using scRNA-seq data from blood and brain tissue, we show that this new method, CellCover, performs as good or better than DE and other methods in defining cell-type discriminating gene panels, while reducing gene redundancy and capturing cell-class-specific signals that are distinct from those defined by DE methods. Transfer learning experiments across mouse, primate, and human data demonstrate that CellCover identifies markers of conserved cell classes in neocortical neurogenesis, as well as developmental progression in both progenitors and neurons. Exploring markers of human outer radial glia (oRG, or basal RG) across mammals, we show that transcriptomic elements of this key cell type in the expansion of the human cortex likely appeared in gliogenic precursors of the rodent before the full program emerged in neurogenic cells of the primate lineage. We have assembled the public datasets we use in this report within the NeMO Analytics multi-omic data exploration environment [1], where the expression of individual genes (NeMO: Individual genes in cortex and NeMO: Individual genes in blood) and marker gene panels (NeMO: Telley 3 CellCover Panels, NeMO: Telley 12 CellCover Panels, NeMO: Sorted Brain Cell CellCover Panels, and NeMO: Blood 34 CellCover Panels) can be freely explored without coding expertise. CellCover is available in CellCover R and CellCover Python. 
    more » « less
  2. Spatially resolved scRNA-seq (sp-scRNA-seq) technologies provide the potential to comprehensively profile gene expression patterns in tissue context. However, the development of computational methods lags behind the advances in these technologies, which limits the fulfillment of their potential. In this study, we develop a deep learning approach for clustering sp-scRNA-seq data, named Deep Spatially constrained Single-cell Clustering (DSSC). In this model, we integrate the spatial information of cells into the clustering process in two steps: (1) the spatial information is encoded by using a graphical neural network model, and (2) cell-to-cell constraints are built based on the spatial expression pattern of the marker genes and added in the model to guide the clustering process. Then, a deep embedding clustering is performed on the bottleneck layer of autoencoder by Kullback–Leibler (KL) divergence along with the learning of feature representation. DSSC is the first model that can use information from both spatial coordinates and marker genes to guide cell/spot clustering. Extensive experiments on both simulated and real data sets show that DSSC boosts clustering performance significantly compared with the state-of-the-art methods. It has robust performance across different data sets with various cell type/tissue organization and/or cell type/tissue spatial dependency. We conclude that DSSC is a promising tool for clustering sp-scRNA-seq data. 
    more » « less
  3. Abstract Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell–cell communications are then obtained by “optimally transporting” signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene–gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell–cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues. 
    more » « less
  4. ABSTRACT: Motivation Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells. While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover, single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra (e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another challenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data. Results Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select informative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods, scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it enables the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell types. We demonstrate that scPNMF outperforms the state-of-the-art gene selection methods on diverse scRNA-seq datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-type annotation on targeted gene profiling data. Availability and implementation The R package is open-access and available at https://github.com/JSB-UCLA/scPNMF. The data used in this work are available at Zenodo: https://doi.org/10.5281/zenodo.4797997. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Single-cell RNA sequencing (scRNA-seq) enables dissecting cellular heterogeneity in tissues, resulting in numerous biological discoveries. Various computational methods have been devised to delineate cell types by clustering scRNA-seq data, where clusters are often annotated using prior knowledge of marker genes. In addition to identifying pure cell types, several methods have been developed to identify cells undergoing state transitions, which often rely on prior clustering results. The present computational approaches predominantly investigate the local and first-order structures of scRNA-seq data using graph representations, while scRNA-seq data frequently display complex high-dimensional structures. Here, we introduce scGeom, a tool that exploits the multiscale and multidimensional structures in scRNA-seq data by analyzing the geometry and topology through curvature and persistent homology of both cell and gene networks. We demonstrate the utility of these structural features to reflect biological properties and functions in several applications, where we show that curvatures and topological signatures of cell and gene networks can help indicate transition cells and the differentiation potential of cells. We also illustrate that structural characteristics can improve the classification of cell types. 
    more » « less