skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liquid Metal‐Vitrimer Conductive Composite for Recyclable and Resilient Electronics
Abstract Electronic devices are ubiquitous in modern society, yet their poor recycling rates contribute to substantial economic losses and worsening environmental impacts from electronic waste (E‐waste) disposal. Here, recyclable and healable electronics are reported through a vitrimer‐liquid metal (LM) microdroplet composite. These electrically conductive, yet plastic‐like composites display mechanical qualities of rigid thermosets and recyclability through a dynamic covalent polymer network. The composite exhibits a high glass transition temperature, good solvent resistance, high electrical conductivity, and recyclability. The vitrimer synthesis proceeds without the need for a catalyst or a high curing temperature, which enables facile fabrication of the composite materials. The as‐synthesized vitrimer exhibits a fast relaxation time with reconfigurability and shape memory. The electrically conductive composite exhibits high electrical conductivity with LM volume loading as low as 5 vol.%. This enables the fabrication of fully vitrimer‐based circuit boards consisting of sensors and indicator LEDs integrated with LM‐vitrimer conductive wiring. Electrical self‐healing and thermally triggered material healing are further demonstrated with the composites. The vitrimer and LM‐composite provide a pathway toward fully recyclable, mechanically robust, and reconfigurable electronics, thus advancing the field of electronic materials.  more » « less
Award ID(s):
2238754
PAR ID:
10652435
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
37
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Conductive adhesives are required for the integration of dissimilar material components to create soft electronic and robotic systems. Here, a heterogeneous liquid metal‐based conductive adhesive is developed that reversibly attaches to diverse surfaces with high stretchability (>100% strain), low modulus (<100 kPa), and strain‐invariant electrical conductivity. This SofT integrated composite with tacK through liquid metal (STICK‐LM) adhesive consists of a heterogeneous graded film with a liquid metal‐rich side that is embossed at prescribed locations for electrical conductivity and an electrically insulating adhesive side for integration. Adhesion behavior is tuned for adhesion energies > 70 Jm2(≈ 25x enhancement over unmodified composites) and described with a viscoelastic analysis, providing design guidelines for controllable yet reversible adhesion in electrically conductive systems. The architecture of STICK‐LM adhesives provides anisotropic and heterogeneous electrical conductivity and enables direct integration into soft functional systems. This is demonstrated with deformable fuses for robotic joints, repositionable electronics that rapidly attach on curvilinear surfaces, and stretchable adhesive conductors with nearly constant electrical resistance. This study provides a methodology for electrically conductive, reversible adhesives for electrical and mechanical integration of multicomponent systems in emerging technologies. 
    more » « less
  2. Electrical and mechanical integration approaches are essential for emerging hybrid electronics that must robustly bond rigid electrical components with flexible circuits and substrates. However, flexible polymeric substrates and circuits cannot withstand the high temperatures used in traditional electronic processing. This constraint requires new strategies to create flexible materials that simultaneously achieve high electrical conductivity, strong adhesion, and processibility at low temperature. Here, an electrically conductive adhesive is introduced that is flexible, electrically conductive (up to 3.25×105S m−1) without sintering or high temperature post‐processing, and strongly adhesive to various materials common to flexible and stretchable circuits (fracture energy 350 <Gc< 700 J m−2). This is achieved through a multiphase soft composite consisting of an elastomeric and adhesive epoxy network with dispersed liquid metal droplets that are bridged by silver flakes, which form a flexible and conductive percolated network. These inks can be processed through masked deposition and direct ink writing at room temperature. This enables soft conductive wiring and robust integration of rigid components onto flexible substrates to create hybrid electronics for emerging applications in soft electronics, soft robotics, and multifunctional systems. 
    more » « less
  3. Stretchable conductive composites (SCCs) are generally elastomer matrices filled with conductive fillers. They combine the conductivity of metals and carbon materials with the flexibility of polymers, which are attractive properties for applications such as stretchable electronics, wearable devices, and flexible sensors. Most conventional conductive composites that are filled with only one type of conductive filler face issues in mechanical and electrical properties. Recently, some studies introduced secondary fillers to create hybrid‐filler SCCs to solve these problems. The secondary fillers produce a synergistic effect with the primary fillers to enhance the electrical conductivity of the composites. They also improve the thermal conductivity and mechanical properties or impart composites with special functions like catalysis and self‐healing. Herein, the fabrication methods, stretchability enhancement strategies, and piezoresistivity of SCCs are analyzed, and their latest applications in stretchable electronics are introduced. Finally, the challenges and prospects of their development are discussed. 
    more » « less
  4. Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle-like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high-power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response. 
    more » « less
  5. Abstract Current stretchable conductors, often composed of elastomeric composites infused with rigid conductive fillers, suffer from limited stretchability and durability, and declined conductivity with stretching. These limitations hinder their potential applications as essential components such as interconnects, sensors, and actuators in stretchable electronics and soft machines. In this context, an innovative elastomeric composite that incorporates a 3D network of liquid metal (LM), offering exceptional stretchability, durability, and conductivity, is introduced. The mechanics model elucidates how the interconnected 3DLM architecture imparts softness and stretchability to the composites, allowing them to withstand tensile strains of up to 500% without rupture. The relatively low surface‐to‐volume ratio of the 3DLM network limits the reforming of the oxide layer during cyclic stretch, thereby contributing to low permanent strain and enhanced durability. Additionally, the 3D architecture facilitates crack blunting and stress delocalization, elevating fracture resistance, while simultaneously establishing continuous conductive pathways that result in high conductivity. Notably, the conductivity of the 3DLM composite increases with strain during substantial stretching, highlighting its strain‐enhanced conductivity. In comparison to other LM‐based composites featuring 0D LM droplets, the 3DLM composite stands out with superior properties. 
    more » « less