Abstract This paper investigates robust versions of the general empirical risk minimization algorithm, one of the core techniques underlying modern statistical methods. Success of the empirical risk minimization is based on the fact that for a ‘well-behaved’ stochastic process $$\left \{ f(X), \ f\in \mathscr F\right \}$$ indexed by a class of functions $$f\in \mathscr F$$, averages $$\frac{1}{N}\sum _{j=1}^N f(X_j)$$ evaluated over a sample $$X_1,\ldots ,X_N$$ of i.i.d. copies of $$X$$ provide good approximation to the expectations $$\mathbb E f(X)$$, uniformly over large classes $$f\in \mathscr F$$. However, this might no longer be true if the marginal distributions of the process are heavy tailed or if the sample contains outliers. We propose a version of empirical risk minimization based on the idea of replacing sample averages by robust proxies of the expectations and obtain high-confidence bounds for the excess risk of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to $$0$$ at fast rates with respect to the sample size $$N$$, referring to the rates faster than $$N^{-1/2}$$. We discuss implications of the main results to the linear and logistic regression problems and evaluate the numerical performance of proposed methods on simulated and real data.
more »
« less
This content will become publicly available on October 1, 2026
Human dimensions in flood risk management: Exploring risk perception and climate change considerations among engineers in the US
- PAR ID:
- 10652447
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Progress in Disaster Science
- Volume:
- 27
- Issue:
- C
- ISSN:
- 2590-0617
- Page Range / eLocation ID:
- 100453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
An official website of the United States government
