We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of binary structuresas a function of particle aspect ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with respect to the other. The simulation results match previously reported experiments on the directed assembly of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium properties for various structures with rotational symmetries, as well as open and enclosed structures under the influence of a uniform magnetic field.
more »
« less
This content will become publicly available on October 8, 2026
Directed assembly of binary suspensions of magnetizable ellipsoids
We investigate the effect of particle anisotropy and magnetic properties on the directed assembly of binary suspensions of magnetizable ellipsoids in a two-dimensional confinement. A suspension of paramagnetic spheres and diamagnetic ellipsoids in a superparamagnetic medium is subjected to a uniform magnetic field that is perpendicular to the assembly plane. We implement the ellipsoid-dipole model in a Monte-Carlo simulation to analyze the effects of particle aspect ratio, medium permeability, and relative particle concentrations on the assembly of binary suspensions of ellipsoids. We validate the simulations by comparing the orientational symmetry of binary structures of magnetizable spheres with previously reported experiments. Simulation results for a binary suspension of paramagnetic and diamagnetic spheres show structures with tunable orientational symmetry as medium permeability increases. Additionally, the results for the directed assembly of paramagnetic spheres and diamagnetic ellipsoids show tunable open-packed triangular enclosures and interconnected chain-like structures with different local order. The simulation results show the potential for customizing the assembled structures by tuning both medium and particle magnetic properties in binary colloidal suspensions.
more »
« less
- Award ID(s):
- 2338064
- PAR ID:
- 10652658
- Publisher / Repository:
- Soft Matter
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 21
- Issue:
- 39
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7662 to 7672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the fundamental theoretical framework of the ellipsoid-dipole model and its applicability in quantifying the pairwise dipolar energy between ellipsoids with different sizes, aspect ratios, and magnetic properties. Additionally, we discuss the limitations of the model and its potential for describing interacting ellipsoids undervarious field conditions for both established and emerging applications. We analyze the dipolar interaction energy of suspensions composed of different pairs of magnetic ellipsoids, including permanently magnetized ellipsoids, paramagnetic ellipsoids, diamagnetic ellipsoids, and mixtures of them. We validate the results of the ellipsoid-dipole model and the corresponding pairwise dipolar interaction energy against those produced by the point-dipole approximation. Furthermore, we quantify the relative equilibrium positions and orientations of different ellipsoid pairs in a uniform magnetic field. The article shows that the ellipsoid-dipole model offers a wide range of possibilities for predicting and engineering colloidal suspensions composed of binary ellipsoids and for enhancing current applications.more » « less
-
Bicontinuous interfacially jammed emulsion gels offer a versatile platform for emulsion templating of functional porous materials, including membranes, electrodes, and tissue-mimetic biomaterials. In many applications of such materials, the microstructure determines the properties and performance of devices. Characterization of the morphological structure of emulsion templates is, thus, an important step in developing fabrication methods for porous materials with tunable microstructure. We present a structural analysis of bijels stabilized by magnetic ellipsoidal particles. Using data from hybrid lattice Boltzmann-molecular dynamics simulations of binary liquids with suspended magnetic ellipsoidal particles, we analyze the bond orientational order within the interfacial particle layer, the mean and Gaussian curvature of the interfaces, and the topological properties of the emulsion morphology. The results suggests that the particle packing at the interface is influenced by the local topology as characterized by the Gaussian curvature, and the global topological properties can be linked to domain coarsening mechanisms, such as coalescence of domains and pinch-off of channels. By analyzing independent simulation runs with different initial conditions, we probe the statistical variations of different properties, including the channel size distribution and the average channel size. Our analysis provides a more detailed picture of the structural properties of bijels stabilized by magnetically responsive ellipsoids and can guide the optimization of interfacial particle packing and domain structure of particle-stabilized emulsion systems.more » « less
-
Laboratory experiments were conducted to study particle migration and flow properties of non-Brownian, noncolloidal suspensions ranging from 10% to 40% particle volume fraction in a pressure-driven flow over and through a porous structure at a low Reynolds number. Particle concentration maps, velocity maps, and corresponding profiles were acquired using a magnetic resonance imaging technique. The model porous medium consists of square arrays of circular rods oriented across the flow in a rectangular microchannel. It was observed that the square arrays of the circular rods modify the velocity profiles and result in heterogeneous concentration fields for various suspensions. As the bulk particle volume fraction of the suspension increases, particles tend to concentrate in the free channel relative to the porous medium while the centerline velocity profile along the lateral direction becomes increasingly blunted. Within the porous structure, concentrated suspensions exhibit smaller periodic axial velocity variations due to the geometry compared to semidilute suspensions (bulk volume fraction ranges from 10% to 20%) and show periodic concentration variations, where the average particle concentration is slightly greater between the rods than on top of the rods. For concentrated systems, high particle concentration pathways aligned with the flow direction are observed in regions that correspond to gaps between rods within the porous medium.more » « less
-
Abstract Mesoporous inorganic particles and hollow spheres are of increasing interest for a broad range of applications, but synthesis approaches are typically material specific, complex, or lack control over desired structures. Here it is reported how combining mesoscale block copolymer (BCP) directed inorganic materials self‐assembly and macroscale spinodal decomposition can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso‐ and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase‐separated (BCP/inorganic precursor)‐domains are confined within the macrophase‐separated majority homopolymer matrix, being self‐organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids, hollow spheres) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. Furthermore, the sizes of particle and hollow inner cavity are tailored by changing the relative amount of homopolymer matrix and the rates of solvent evaporation. Pyrolysis yields discrete mesoporous inorganic particles and hollow spheres. The present approach enables a high degree of control over pore structure, orientation, and size (15–44 nm), particle shape, particle size (0.6–3 µm), inner cavity size (120–700 nm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).more » « less
An official website of the United States government
