skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 20, 2026

Title: Functionalization of Water-Soluble Metallopolymer Electrocatalysts for Water-Splitting Using Atom Transfer Radical Polymerization and Click Chemistry
ABSTRACT: The diverse functionalization of the polymeric support phase of diiron disulfide[2Fe–2S] metallopolymer elec-trocatalysts offers a route to enhanced generation of molecular hydrogen production via water-splitting. Click chemistry has been shown to be a useful tool in post-polymerization functionalization for a wide range of polymeric materials under mild conditions which is a requirement for [2Fe-2S] metallopolymers due to the presence of iron carbonyl (Fe-CO) bonds in the active site. In this study, we developed a new synthetic methodology to functionalize [2Fe–2S] metallopolymers using atom transfer radical polymerization (ATRP) and post-polymerization functionalization using azide-alkyne “click” cycloaddition. Azide functional [2Fe–2S] metallopolymers were prepared by the ATRP of 3-azidopropyl methacrylate (AzPMA) with either methyl methacrylate (MMA), or 2-(dimethylamino)ethyl methacrylate (DMAEMA), followed by copper-catalyzed “click” cycloaddition with functional terminal alkynes. Both families of PMMA and PDMAEMA functional [2Fe–2S] metallo-co-polymers were found to be retain Fe-CO bonds from the catalyst active site after the click chemistry reactions, and more importantly, exhibited high electrocatalytic activity for electrochemical water-splitting under pH neutral aqueous conditions.Not Available  more » « less
Award ID(s):
1954641 1664745
PAR ID:
10652686
Author(s) / Creator(s):
; ; ;
Editor(s):
Rowan, Stuart J
Publisher / Repository:
ACS Macro Letters
Date Published:
Journal Name:
ACS Macro Letters
Volume:
14
Issue:
5
ISSN:
2161-1653
Page Range / eLocation ID:
582 to 588
Subject(s) / Keyword(s):
metallopolymers catalysis hydrogen production ATRP click chemistry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Small molecule biomimetics inspired by the active site of the [FeFe]‐hydrogenase enzymes have shown promising electrocatalytic activity for hydrogen (H2) generation. However, most of the active‐site mimics based on [2Fe‐2S] clusters are not water‐soluble which limits the use of these electrocatalysts to organic media. Polymer‐supported [2Fe‐2S] systems, in particular, single‐site metallopolymer catalysts, have shown drastic improvements for electrocatalytic H2generation in aqueous milieu. [2Fe‐2S] complexes functionalized within well‐defined macromolecular supports via covalent bonding have demonstrated water solubility, enhanced site‐isolation, and improved chemical stability during catalysis. In this report, the synthesis of a new propanedithiolate (pdt)‐[2Fe‐2S] complex bearing a single α‐bromoester moiety for use in atom transfer radical polymerization (ATRP) is demonstrated as a novel metalloinitiator to prepare water‐soluble poly(2‐dimethylaminoethyl methacrylate) grafted (PDMAEMA‐g‐[2Fe‐2S]) metallopolymers. Using this approach, metallopolymers with controllable molecular weights (Mn= 5–40 kg mol−1) and low dispersity (Đ,Mw/Mn= 1.09–1.36) are prepared, which allows for the first time observation of the effect of the metallopolymers' chain length on the electrocatalytic activity. The ability to control the composition and molecular weight of these metallopolymers enables macromolecular engineering via ATRP of these materials to determine optimal structural features of metallopolymer catalysts for H2production. 
    more » « less
  2. Rowan, Stuart J (Ed.)
    ABSTRACT: We review in this Viewpoint recent progress on the development of a new class of sustainable electrocatalytic systems for water-splitting and molecular hydrogen generation using diiron disulfide ([2Fe-2S]) active site methacrylate metallopolymers. To date, noble metal catalysts (e.g, platinum) remain the best electrocatalysts for molecular hydrogen generation using water as the chemical feedstock and proton donor. However, there remains a need for the synthesis of efficient electrocatalytic systems using low cost, earth abundant materials for sustainable H2 generation. We focus on our recent work in this area using well-defined single site [2Fe-2S]-metallopolymer catalysts. Thus far, these systems have demonstrated rates of hydrogen production >25 times faster than [FeFe]-hydrogenase enzymes and match the current densities of platinum with only 0.2 V higher potential when operating in water at neutral pH with tris(hydroxymethyl)aminoethane (TRIS) buffer (Faradaic yields 100±3%). The molecular design and synthesis of [2Fe-2S]-metallopolymers are reviewed along with mechanistic studies unraveling the causality of efficient H2 production from this catalytic system. The overall current output and overpotential are improved by (a) the reversible electrostatic adsorption of the metallopolymer on the carbon electrode surface that enhances the proton and electron transfer rates and (b) the use of protic buffer electrolytes (PBEs) that enhance the availability of protons. The schemes summarized here to improve the performance of [2Fe-2S] catalysts by incorporation into metallopolymers may be used to enhance the performance of other molecular electrocatalysts at the electrode surface. 
    more » « less
  3. Abstract Reviewed herein is the development of novel polymer‐supported [2Fe‐2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small‐molecule, [2Fe‐2S]‐containing mimetics of the active site (H‐cluster) of these metalloenzymes have been synthesized for years. These small [2Fe‐2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe‐2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer‐supported [2Fe‐2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe‐2S] complex, termed single‐site [2Fe‐2S] metallopolymers, exhibit superior activity for H2production. 
    more » « less
  4. A molecular catalyst attached to an electrode sur-face can in principle offer the advantages of both homogeneous and heterogeneous catalysis. Unfortunately, some molecular catalysts constrained to a surface lose much or all of their solution performance. In contrast, we have found that when a small molecule [2Fe–2S] catalyst is incorporated into metallopolymers of the form PDMAEMA–g–[2Fe–2S] (PDMAEMA = poly(2-dimethylamino)ethyl methacrylate) and adsorbed to the sur-face, the observed rate of hydrogen production increases to kobs > 105 s-1 per active site with lower overpotential, increased life-time, and tolerance to oxygen. Herein, the electrocatalytic performances of these metallopolymers with different length polymer chains are compared to reveal the factors that lead to this high performance. It was anticipated that smaller metallopolymers would have faster rates due to faster electron and proton transfers to more accessible active sites, but the experiments show that the rates of catalysis per active site are largely independent of the polymer size. Molecular dynamics modelling reveals that the high performance is a consequence of adsorption of these metallopolymers on the surface with natural assembly that brings the [2Fe–2S] catalytic sites into close contact with the electrode surface while maintaining exposure of the sites to protons in solution. The assembly is conducive to fast electron transfer, fast proton transfer, and a high rate of catalysis regardless of polymer size. These results offer a guide to enhancing the performance of other electrocatalysts with incorporation into a polymer that provides optimal interaction of the catalyst with the electrode and with solution. 
    more » « less
  5. Rare earth elements (REEs) are a vital part of many technologies with particular importance to the renewable energy sector and there is a pressing need for environmentally friendly and sustainable processes to recover and recycle them from waste streams. Functionalized polymer scaffolds are a promising means to recover REEs due to the ability to engineer both transport properties of the porous material and specificity for target ions. In this work, REE adsorbing polymer scaffolds were synthesized by first introducing poly(glycidyl methacrylate) (GMA) brushes onto porous polyvinylidene fluoride (PVDF) surface through activator generated electron transfer atom transfer radical polymerization (AGET ATRP). Azide moieties were then introduced through a ring opening reaction of GMA. Subsequently, REE-binding peptides were conjugated to the polymer surface through copper catalyzed azide alkyne cycloaddition (CuAAC) click chemistry. The presence of GMA, azide, and peptide was confirmed through Fourier transform infrared spectroscopy. Polymer scaffolds functionalized with the REE-binding peptide bound cerium, while polymer scaffolds functionalized with a scrambled control peptide bound significantly less cerium. Importantly, this study shows that the REE binding peptide retains its functionality when bound to a polymer surface. The conjugation strategy employed in this work can be used to introduce peptides onto other polymeric surfaces and tailor surface specificity for a wide variety of ions and small molecules. 
    more » « less