The escalating adoption of wide-bandgap (WBG) semiconductor devices in power electronics has led to the generation of high-frequency, high-slew-rate voltage waveforms, which exert significant stress on encapsulating materials such as silicone gel (SG). This study systematically investigates the breakdown performance of SG under DC,60 HzAC, and highfrequency square wave excitations. Breakdown voltage assessments were performed across a frequency range of 10 to 50 kHz for square pulses with 100 ns rise time, revealing a pronounced decline in dielectric strength as frequency increased. Specifically, the breakdown voltage measured under DC conditions, which was 20.6 kV, diminished by 84.9 % when subjected to a square wave excitation at 50 kHz. Furthermore, electric field simulations elucidated the phenomenon of localized field intensification occurring near the needle tip, which corresponded with the identified breakdown locations. The key revelations from this research underscore the limitations inherent in conventional testing methodologies, which fail to adequately characterize the degradation behavior of SG under realistic high-frequency fast-rise square voltage stress conditions.
more »
« less
Investigating Partial Discharge Characteristics in Silicone Gel for (U)WBG Power Modules Under Negative DC Voltage: A Comparative Study of Optical and Electrical Detection Methods
This paper aims to investigate the accuracy of the optical partial discharge (PD) detection technique in recording PD activity within silicone gel (SG), using conventional electrical techniques as a reference. Given the inevitable high-frequency, high-slew rate square voltage operation of (U)WBG power modules, alternative PD measurement techniques are needed to replace conventional electrical methods. Before implementing optical detection for high-slew rate square pulses, its accuracy under DC voltage conditions-where electrical PD detection is reliable due to its immunity to EMI and disturbances-must be assessed. This study analyzes PD activity within SG using a needle-to-plate electrode configuration under varying negative DC voltages, employing both optical and electrical PD detection techniques. It also examines the impact of decreasing the distance between the electrodes and compares PD signal results at various voltages between the APD optical sensor and the Omicron MPD800 software. As no previous research has correlated electrical and optical PD detection methods, this paper serves as a valuable reference for future studies involving PD measurement in encapsulation materials under high-frequency, high-slew rate square wave voltages.
more »
« less
- Award ID(s):
- 2306093
- PAR ID:
- 10652870
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Location:
- Auburn, AL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Most research involving resistive field grading materials or nonlinear field-dependent conductivity (FDC) layers has predominantly concentrated on DC or sinusoidal AC voltages, even though (U)WBG power electronic modules typically operate under high-frequency square wave voltages. To bridge this existing research gap, the present study systematically investigates the efficacy of an FDC coating in alleviating electric field stress when subjected to high-frequency, high-slew-rate square wave voltages. The findings indicate that applying a nonlinear FDC layer significantly reduces electric field stress, even under stringent conditions involving elevated operating frequencies. Furthermore, the influence of the square wave voltage type—the distinction between unipolar and bipolar square waveforms—on electric field stress remains inadequately understood despite substantial progress in breakdown and PD experiments related to these phenomena. Consequently, this study undertakes a comparative analysis of nonlinear FDC layers' performance under unipolar (+27.5 kV) and bipolar (±27.5 kV) square wave voltages. In doing so, this investigation contributes valuable insights into the interplay between high-frequency operation, the polarity of square waveforms, and the efficacy of nonlinear FDC layers in mitigating electric field stress within (U)WBG power module packages.more » « less
-
A vast majority of research on (U)WBG power modules has been going on to implement nonlinear resistive field grading material on metal-brazed substrates in reducing the electric field that is maximum at triple points (TPs). However, nearly all investigations have been conducted under either DC or 50/60 HZ sinusoidal AC voltages, even though the actual operation of envisioned (U)WBG power modules involves high-frequency square voltages with high slew rates. It has been validated by several studies that fast rise times of square voltages rapidly degrade the breakdown strength of insulation materials, leading to premature failure. Therefore, this paper introduces a nonlinear resistive field grading material or field-dependent conductivity (FDC) layer around the TP and metal edges to evaluate the electric field mitigation under a high frequency and high slew rate square voltage. The modeling and simulation of both coated and uncoated (U)WBG substrates were performed in COMSOL Multiphysics to assess the electric field reduction with the nonlinear FDC layer. The improvement of reduction in electric field under 100 kHz high slew rate square voltage is compared with that of 60 Hz. The results reveal a significant decrease in field stress at the TP, even under square voltages with fast rise times and high frequencies, when applying a nonlinear FDC coating, as opposed to the uncoated substrate. The influence of switching field (Eb) and nonlinearity coefficient (α) of nonlinear FDC layer is studied under 100 kHz square voltage, and it is concluded that α and Eb should be more than 10 and less than 8 kV/mm, respectively to achieve effective performance of resistive field grading material.more » « less
-
Incorporating nonlinear resistive field grading materials (FGMs) onto metal-brazed substrates has been widely investigated as an efficient electric field reduction strategy at triple points (TPs) within ultrawide bandgap [(U)WBG] power modules. However, most investigations have been carried out using either dc or sinusoidal ac voltages despite actual (U)WBG power modules operating with high-frequency square voltages featuring high-slew rate ( dv/dt ). Thus, this study introduces a field-dependent conductivity (FDC) layer to analyze electric field reduction under high-frequency, high-slew-rate square voltages. Using COMSOL Multiphysics, both coated and uncoated structures were modeled to evaluate electric field reduction. When employing nonlinear FDC coating, the findings demonstrate a notable decrease in field stress, even under square voltages with rapid rise times and high frequencies. However, relying solely on the nonlinear FDC layer may not adequately address the electric field concerns, particularly when factoring in protrusions on metallization layers and reducing layer coverage. In response to this challenge, protrusions at the metal ends are incorporated into a protruding substrate configuration. This entire structure is then coated with a nonlinear FDC layer. The combined impact of the protruding substrate and nonlinear FDC layer effectively reduces the electric field. However, when the rise time is shortened to 75 ns and the frequency is raised to 500 kHz, the electric field stress around TPs exceeds the insulation’s withstand strength. This finding underscores the need for further research into alternative strategies as the prevalent strategies are unable to effectively mitigate electric fields in real-world operating conditions of (U)WBG power modules.more » « less
-
null (Ed.)Emerging applications of compact high-voltage SiC modules pose strong challenges in the module package insulation design. Such SiC module insulations are subjected to both high voltage DC and PWM excitations between different terminals during different switching intervals. High dV/dt strongly interferes with partial discharge (PD) testing as it is hard to distinguish PD pulses and PWM excitation induced interferences. This paper covers both the testing and modeling of PD phenomena in high-voltage power modules. A high dV/dt PD testing platform is proposed, which involves a Super-High-Frequency (SHF, >3GHz) down-mixing PD detection receiver and a high-voltage scalable square wave generator. The proposed method captures SHF PD signatures and determines PDIV for packaging insulation. Using this platform, this paper provides a group of PDIV comparisons of packaging insulation under DC and PWM waveforms and discloses discrepancies in these PDIV results with respect to their excitations. Based on these PD testing results, the paper further provides a model using space charge accumulation to explain the PD difference under DC and PWM waveforms. Both simulation and sample testing results are included in this paper to support this hypothesis. With this new model, the paper includes an updated insulation design procedure for high-voltage power modules.more » « less
An official website of the United States government

