The size-distribution, coverage, electrochemical impedance, and mass-transport properties of H 2 gas-bubble films were measured for both planar and microwire-array platinized n + -Si cathodes performing the hydrogen-evolution reaction in 0.50 M H 2 SO 4 (aq). Inverted, planar n + -Si/Ti/Pt cathodes produced large, stationary bubbles which contributed to substantial increases in ohmic potential drops. In contrast, regardless of orientation, microwire array n + -Si/Ti/Pt cathodes exhibited a smaller layer of bubbles on the surface, and the formation of bubbles did not substantially increase the steady-state overpotential for H 2 (g) production. Experiments using an electroactive tracer species indicated that even when oriented against gravity, bubbles enhanced mass transport at the electrode surface. Microconvection due to growing and coalescing bubbles dominated effects due to macroconvection of gliding bubbles on Si microwire array cathodes. Electrodes that maintained a large number of small bubbles on the surface simultaneously exhibited low concentrations of dissolved hydrogen and small ohmic potential drops, thus exhibiting the lowest steady-state overpotentials. The results indicate that microstructured electrodes can operate acceptably for unassisted solar-driven water splitting in the absence of external convection and can function regardless of the orientation of the electrode with respect to the gravitational force vector.
more »
« less
This content will become publicly available on November 24, 2026
Computational Modeling of Methane Pyrolysis in a Fixed-Bed Reactor for CO₂-Free Hydrogen Production”
Understanding the dynamics of a methane bubble in a liquid metal bubble column reactor is important for optimizing the reactor design and improving efficiency. To better understand methane bubble dynamics and the reaction to produce hydrogen, we employ ANSYS Fluent to investigate the gas-liquid interface, to relate the surface area where reaction occurs to bubble size, and to determine coalescing behavior as a function of dimensionless numbers. Once the simulation is verified by comparing bubble velocity [1], shape [2], and coalescing distance [3] for a water-air system, a methane bubble in liquid bismuth at 1000 k is examined [4] [5]. Experimentally obtained kinetic parameters for the reaction are used in the computations. The bubble interfacial area to volume ratio is maximized at a diameter of 4mm and does not induce breakage of the bubble. The coalescing distance for two bubbles of methane in bismuth is a third of the distance for air in water bubbles. REFERENCES 1. S. Baz-Rodríguez, A. Aguilar-Corona, and A. Soria, Rev. Mex. Ing. Quím. 8, 213 (2009). 2. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic Press, New York, 1978). 3. T. Otake, S. Tone, K. Nakao, and Y. Mitsuhashi, Chem. Eng. Sci. 32, 377 (1977). 4. M. J. Assael, K. Gialou, K. Kakosimos, and I. Metaxa, High Temp. High Press. 41, 101 (2012). 5. Engineering ToolBox (2004), https://www.engineeringtoolbox.com/methane-d_1420.html. Funding acknowledgement The support of the US National Science Foundation under grant number 2317726 is gratefully acknowledged.
more »
« less
- Award ID(s):
- 2317726
- PAR ID:
- 10653012
- Publisher / Repository:
- American Physical Society, Division of Fluid Dynamics
- Date Published:
- Format(s):
- Medium: X
- Location:
- Houston, TX
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract: One-meter soil cores were taken to evaluate soil texture, bulk density, carbon and nitrogen pools, microbial biomass carbon and nitrogen content, microbial respiration, potential net nitrogen mineralization, potential net nitrification and inorganic nitrogen pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to soils from 8 forested reference sites. Purpose: Soil cores were obtained from residential and forest sites in the Baltimore, MD USA metropolitan area. The residential sites were mostly within the Gwynns Falls Watershed (-76.012008W, -77.314183E, 39.724847N, 38.708367S and approximately 17 km2) Lawns on residential sites were dominated by a variety of cool season turfgrasses. Forest soil cores were taken from permanent forest plots of the Baltimore Ecosystem Study (BES) LTER (Groffman et al. 2006). These remnant forests are over 100 years old with soils that were comparable in type and texture to those underlying the residential study sites. Soils from all sites were from the Manor series (coarse-loamy, micaceous, mesic Typic Dystrudepts), which are well-drained upland soils with loamy textures and bedrock at 5 to 10 feet below the soil surface. To aid the site selection process we used neighborhoods in the Baltimore City metropolitan area that have been mapped using HERCULES, a high resolution land cover classification system designed to assist in the study of human-ecological systems (Cadenasso et al. 2007). Using HERCULES and additional data sources, we identified residential sites that were similar except for single factors that we hypothesized to be important predictors of ecosystem dynamics. These factors included land use history (agriculture and forest, n = 10 and n = 22), housing density (low and medium/high, n = 9 and n = 23), and housing age (4 to 58 yrs old, n = 32). Housing age was acquired from the Maryland Property View database. Prior land use was determined based on land use change maps developed by integrating aerial photos from 1938, 1957, 1971, and 1999 into a geographic information system. Once a list of residential parcels meeting the predefined criteria were identified, we sent mailings to property owners chosen at random from each of the factor groups with the goal of recruiting 40 property owners for a 3 year study (of which this work is a part). We had recruited 32 property owners at the time that soil cores were obtained. Data have been published in Raciti et al. (2011a, 2011b) References Cadenasso, M. L., S. T. A. Pickett, and K. Schwarz. 2007. Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment 5:80-88. Groffman, P. M., R. V. Pouyat, M. L. Cadenasso, W. C. Zipperer, K. Szlavecz, I. D. Yesilonis, L. E. Band, and G. S. Brush. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, and T. J. Fahey. 2011a. Controls on nitrate production and availability in residential soils. Ecological Applications:In press. Raciti, S. R., P. M. Groffman, J. C. Jenkins, R. V. Pouyat, T. J. Fahey, M. L. Cadenasso, and S. T. A. Pickett. 2011b. Accumulation of carbon and nitrogen in residential soils with different land use histories. Ecosystems 14:287-297.more » « less
-
METHODS: Fluxes were measured using a system of 8 automatic gas-sampling chambers made of transparent Lexan (n=3 each in the palsa and bog habitats, and n=2 in the fen habitat). Chambers were initially installed in the three habitat types at Stordalen Mire in 2001 (Bäckstrand et al., 2008) and the chamber lids were replaced in 2011 with the current design, similar to that described by Bubier et al 2003. Chambers cover an area of 0.2 m2 (45 cm x 45 cm), with a height ranging from 15-75 cm depending on habitat vegetation. At the Palsa and bog site the chamber base is flush with the ground and the chamber lid (15 cm in height) lifts clear of the base between closures. At the fen site the chamber base is raised 50–60 cm on lexon skirts to accommodate large stature vegetation. The chambers are connected to the gas analysis system, located in an adjacent temperature-controlled cabin, by 3/8” Dekoron tubing through which air is circulated at approximately 2.5 L min-1. Each chamber lid is closed once every 3 hours for a period of 8 min, with a 5 min flush period before and after lid closure. Gas concentration in the chamber headspace was measured with a Los Gatos Research (LGR) Fast Greenhouse Gas Analyzer, with timing control and data acquisition using a Campbell CR10x (Holmes et al., 2022). References: Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. & Bastviken, D. Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. Journal of Geophysical Research 113, (2008). Bubier, J. L., Crill, P. M., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biogeochemical Cycles 17, (2003). Holmes, M. E., Crill, P. M., Burnett, W. C., McCalley, C. K., Wilson, R. M., Frolking, S., Chang, K. ‐Y., Riley, W. J., Varner, R. K., Hodgkins, S. B., IsoGenie Project Coordinators, IsoGenie Field Team, McNichol, A. P., Saleska, S. R., Rich, V. I., Chanton, J. P. (2022). Carbon accumulation, flux, and fate in Stordalen Mire, a permafrost peatland in transition. Global Biogeochemical Cycles, 36, e2021GB007113, doi:10.1029/2021GB007113. McCalley, C.K., B.J. Woodcroft, S.B. Hodgkins, R.A. Wehr, E-H. Kim, R. Mondav, P.M. Crill, J.P. Chanton, V.I. Rich, G.W. Tyson, S.R. Saleska (2014), Methane dynamics regulated by microbial community response to permafrost thaw, Nature, 514:478-481, doi:10.1038/nature13798. FUNDING: This research is a contribution of the EMERGE Biology Integration Institute, funded by the National Science Foundation, Biology Integration Institutes Program, Award # 2022070.We thank the Swedish Polar Research Secretariat and SITES for the support of the work done at the Abisko Scientific Research Station. SITES is supported by the Swedish Research Council's grant 4.3-2021-00164.This study was also funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grant #s DE-SC0004632, DE-SC0010580, and DE-SC0016440.These autochamber measurements were also supported by a grant from the US National Science Foundation MacroSystems program (NSF EF 1241037, PI Varner).more » « less
-
Humpback whale breathing-related sounds were recorded on elements of a coherent hydrophone array subaperture deployed vertically at the Great South Channel on the US Northeastern continental shelf in Fall 2021, where half of the hydrophones were in-air and the rest submerged underwater. In-air hydrophones recorded breathing sounds with approximately 2.5 s duration, but smaller bandwidths compared to underwater hydrophones where signal energies extended beyond 50 kHz, and a mean underwater source level of 161 ± 4 dB re 1 μPa at 1 m, based on measurements at 22.9 m. The underwater recorded humpback whale breathing sound spectra displayed a broadband dip centered at 15.7 kHz, with approximately 400 Hz half-power bandwidth, likely caused by attenuation from propagation through pulsating air bubbles. The air bubble radius for natural frequency of oscillations at 15.7 kHz is estimated to be 0.205–0.21 mm. These bubbles are capable of removing energy from the forward propagated humpback breathing sounds via resonance absorption most pronounced at and near bubble natural oscillation frequency. Humpback whale distances from the vertically deployed hydrophones are estimated and tracked by matching the curved nonlinear travel-time wavefront of its breathing sounds, since the whale was in the near-field of the subarray.more » « less
-
Abstract Tropical floodplains are an important source of methane (CH4) to the atmosphere, and ebullitive fluxes are likely to be important. We report direct measurements of CH4ebullition in common habitats on the Amazon floodplain over two years based on floating chambers that allowed detection of bubbles, and submerged bubble traps. Ebullition was highly variable in space and time. Of the 840 floating chamber measurements (equivalent to 8,690 min of 10‐min deployments), 22% captured bubbles. Ebullitive CH4fluxes, measured using bubble traps deployed for a total of approximately 230 days, ranged from 0 to 109 mmol CH4m−2 d−1, with a mean of 4.4 mmol CH4m−2 d−1. During falling water, a hydroacoustic echosounder detected bubbles in 24% of the 70‐m segments over 34 km. Ebullitive flux increased as the water level fell faster during falling water periods. In flooded forests, highest ebullitive fluxes occurred during falling water, while in open water and herbaceous plant habitats, higher ebullitive fluxes were measured during low water periods. The contribution of diffusive plus ebullitive CH4flux represented by ebullition varied from 1% (high and rising water in open water of the lake) to 93% (falling water in flooded forests) based on bubble traps. Combining ebullitive and diffusive fluxes among habitats in relation to variations in water depth and areal coverage of aquatic habitats provides the basis for improved floodplain‐wide estimates of CH4evasion.more » « less
An official website of the United States government
