Abstract The Protein Data Bank (PDB) archives 3D structures of macromolecules determined experimentally using various methods. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) consortium. Research Collaboratory for Structural Bioinformatics (RCSB) PDB, the US data center for the PDB, provides streamlined access to >240 000 structures through a variety of research-focused tools on RCSB.org. In addition, RCSB.org makes available over 1 million computed structure models (CSMs) predicted using deep learning methods and archived in the AlphaFold Database and ModelArchive. The PDB-IHM system was developed as a wwPDB project based on community recommendations to archive structures determined using integrative/hybrid methods (IHM). These structures are computed by combining information from multiple experimental and computational techniques to overcome the limitations of traditional single methods (e.g. macromolecular crystallography, 3D electron microscopy, nuclear magnetic resonance spectroscopy). In 2024, PDB-IHM was unified with the PDB to archive integrative structures alongside single-method experimental structures. These integrative structures have been made accessible via the RCSB.org website, facilitating efficient delivery of IHM data to a broad community of PDB users. Herein, we describe the expanded capabilities of RCSB.org that support discovery, analysis, and visualization of integrative structures together with single-method experimental structures and CSMs.
more »
« less
This content will become publicly available on August 1, 2026
PDB-IHM: A System for Deposition, Curation, Validation, and Dissemination of Integrative Structures
Structures of many large biomolecular assemblies are now being determined using integrative approaches. In these approaches, information derived from multiple experimental and computational methods is combined to compute three-dimensional structures of multi-protein complexes and other macromolecular machines. A standalone prototype data resource for integrative structures called PDB-Dev was built, based on recommendations of the Integrative and Hybrid Methods (IHM) Task Force of the Worldwide Protein Data Bank (wwPDB). This effort included developing data standards and software tools for collecting, curating, validating, visualizing, archiving, and disseminating integrative structures that span diverse spatiotemporal scales and conformational states. Mechanisms have been created to validate integrative structures based on the experimental data underpinning them. Building upon this foundational framework, PDB-Dev has been further expanded to handle large dynamic macromolecular systems and integrative structures that combine, for example, experimental restraints with atomic coordinates computed by machine learning algorithms. Data standards and supporting tools have also been extended to capture information about biomolecular dynamics, such as conformational transitions and related kinetic data derived from biophysical methods. Recently, PDB-Dev was unified with the PDB archive and rebranded as PDB-IHM (pdb-ihm.org), further promoting FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data stewardship for integrative structural biology.
more »
« less
- Award ID(s):
- 2112966
- PAR ID:
- 10653055
- Publisher / Repository:
- Journal of Molecular Biology, Elsevier
- Date Published:
- Journal Name:
- Journal of Molecular Biology
- Volume:
- 437
- Issue:
- 15
- ISSN:
- 0022-2836
- Page Range / eLocation ID:
- 168963
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure. Following the FAIR (Findable, Accessible, Interoperable and Reusable) principles, PDB-Dev ensures that the results of integrative structure determinations are freely accessible to everyone.more » « less
-
Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be overcome via an integrative modeling approach that relies on information from all available sources, including all available experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are validated as part of their publication and deposition. A number of research groups have already developed software to implement integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev ( https://pdb-dev.wwpdb.org ) has also been created to archive integrative structural models, together with a Python library to facilitate handling of integrative models in PDBx/mmCIF format.more » « less
-
Recent advances in Artificial Intelligence and Machine Learning (e.g., AlphaFold, RosettaFold, and ESMFold) enable prediction of three-dimensional (3D) protein structures from amino acid sequences alone at accuracies comparable to lower-resolution experimental methods. These tools have been employed to predict structures across entire proteomes and the results of large-scale metagenomic sequence studies, yielding an exponential increase in available biomolecular 3D structural information. Given the enormous volume of this newly computed biostructure data, there is an urgent need for robust tools to manage, search, cluster, and visualize large collections of structures. Equally important is the capability to efficiently summarize and visualize metadata, biological/biochemical annotations, and structural features, particularly when working with vast numbers of protein structures of both experimental origin from the Protein Data Bank (PDB) and computationally-predicted models. Moreover, researchers require advanced visualization techniques that support interactive exploration of multiple sequences and structural alignments. This paper introduces a suite of tools provided on the RCSB PDB research-focused web portal RCSB. org, tailor-made for efficient management, search, organization, and visualization of this burgeoning corpus of 3D macromolecular structure data.more » « less
-
Abstract The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB‐designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three‐dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro‐electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research‐focusedRCSB.orgweb portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and educationPDB101.RCSB.orgweb portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past yearviatheRCSB.orgweb portal.more » « less
An official website of the United States government
