Purpose:With application to the United States, this tutorial explores barriers in the American juvenile justice system for justice-involved youth (JIY) with cognitive-communication disorders (CCDs). It outlines models from abroad and reimagines the American juvenile justice system to include speech-language pathologists (SLPs) as interprofessional practice partners. Method:Interprofessional (i.e., criminal justice, speech-language pathology) literature from the United States and overseas is reviewed and summarized to explain the American juvenile justice system, outline areas of concern for youth with CCDs, and describe potential solutions. Results:The application of speech-language pathology services within the juvenile justice system is explained and visually depicted. This framework was informed by intervention models and approaches from international examples. Conclusions:There is an opportunity to embed speech-language pathology services from intake into court action and through disposition for JIY with cognitive-communication impairments. This includes interprofessional education and development, SLPs providing direct intervention, and multidisciplinary screening efforts. Speech-language pathologists as interprofessional advocates and practice partners can improve life chances and outcomes for youth with CCDs in the juvenile justice system.
more »
« less
This content will become publicly available on September 1, 2026
Automating Intervention Discovery from Scientific Literature: A Progressive Ontology Prompting and Dual-LLM Framework
Identifying effective interventions from the scientific literature is challenging due to the high volume of publications, specialized terminology, and inconsistent reporting formats, making manual curation laborious and prone to oversight. To address this challenge, this paper proposes a novel framework leveraging large language models (LLMs), which integrates a progressive ontology prompting (POP) algorithm with a dual-agent system, named LLM-Duo. On the one hand, the POP algorithm conducts a prioritized breadth-first search (BFS) across a predefined ontology, generating structured prompt templates and action sequences to guide the automatic annotation process. On the other hand, the LLM-Duo system features two specialized LLM agents, an explorer and an evaluator, working collaboratively and adversarially to continuously refine annotation quality. We showcase the real-world applicability of our framework through a case study focused on speech-language intervention discovery. Experimental results show that our approach surpasses advanced baselines, achieving more accurate and comprehensive annotations through a fully automated process. Our approach successfully identified 2,421 interventions from a corpus of 64,177 research articles in the speech-language pathology domain, culminating in the creation of a publicly accessible intervention knowledge base with great potential to benefit the speech-language pathology community.
more »
« less
- Award ID(s):
- 2229873
- PAR ID:
- 10653117
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- Page Range / eLocation ID:
- 9701 to 9709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific and knowledge-intensive tasks, LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions. Additionally, fine tuning LLMs' intrinsic knowledge to highly specific domains is an expensive and time consuming process. The retrieval-augmented generation (RAG) process has recently emerged as a method capable of optimization of LLM responses, by referencing them to a predetermined ontology. It was shown that using a Knowledge Graph (KG) ontology for RAG improves the QA accuracy, by taking into account relevant sub-graphs that preserve the information in a structured manner. In this paper, we introduce SMART-SLIC, a highly domain-specific LLM framework, that integrates RAG with KG and a vector store (VS) that store factual domain specific information. Importantly, to avoid hallucinations in the KG, we build these highly domain-specific KGs and VSs without the use of LLMs, but via NLP, data mining, and nonnegative tensor factorization with automatic model selection. Pairing our RAG with a domain-specific: (i) KG (containing structured information), and (ii) VS (containing unstructured information) enables the development of domain-specific chat-bots that attribute the source of information, mitigate hallucinations, lessen the need for fine-tuning, and excel in highly domain-specific question answering tasks. We pair SMART-SLIC with chain-of-thought prompting agents. The framework is designed to be generalizable to adapt to any specific or specialized domain. In this paper, we demonstrate the question answering capabilities of our framework on a corpus of scientific publications on malware analysis and anomaly detection.more » « less
-
Recent studies find existing self-supervised speech encoders contain primarily acoustic rather than semantic information. As a result, pipelined supervised automatic speech recognition (ASR) to large language model (LLM) systems achieve state-of-the-art results on semantic spoken language tasks by utilizing rich semantic representations from the LLM. These systems come at the cost of labeled audio transcriptions, which is expensive and time-consuming to obtain. We propose a taskagnostic unsupervised way of incorporating semantic information from LLMs into selfsupervised speech encoders without labeled audio transcriptions. By introducing semantics, we improve existing speech encoder spoken language understanding (SLU) performance by over 5% on intent classification (IC), with modest gains in named entity resolution (NER) and slot filling (SF), and spoken question answering (SQA) FF1 score by over 2%. Our approach, which uses no ASR data, achieves similar performance as methods trained on over 100 hours of labeled audio transcripts, demonstrating the feasibility of unsupervised semantic augmentations to existing speech encoders.more » « less
-
Large Language Models (LLMs) have demonstrated significant potential across various applications, but their use as AI copilots in complex and specialized tasks is often hindered by AI hallucinations, where models generate outputs that seem plausible but are incorrect. To address this challenge, we develop AutoFEA, an intelligent system that integrates LLMs with Finite Element Analysis (FEA) to automate the generation of FEA input files. Our approach features a novel planning method and a graph convolutional network (GCN)-Transformer Link Prediction retrieval model, which enhances the accuracy and reliability of the generated simulations. The AutoFEA system proceeds with key steps: dataset preparation, step-by-step planning, GCN-Transformer Link Prediction retrieval, LLM-driven code generation, and simulation using CalculiX. In this workflow, the GCN-Transformer model predicts and retrieves relevant example codes based on relationships between different steps in the FEA process, guiding the LLM in generating accurate simulation codes. We validate AutoFEA using a specialized dataset of 512 meticulously prepared FEA projects, which provides a robust foundation for training and evaluation. Our results demonstrate that AutoFEA significantly reduces AI hallucinations by grounding LLM outputs in physically accurate simulation data, thereby improving the success rate and accuracy of FEA simulations and paving the way for future advancements in AI-assisted engineering tasks.more » « less
-
Surgical pathology reports contain essential diagnostic information, in free-text form, required for cancer staging, treatment planning, and cancer registry documentation. However, their unstructured nature and variability across tumor types and institutions pose challenges for automated data extraction. We present a consensus-driven, reasoning-based framework that uses multiple locally deployed large language models (LLMs) to extract six key diagnostic variables: site, laterality, histology, stage, grade, and behavior. Each LLM produces structured outputs with accompanying justifications, which are evaluated for accuracy and coherence by a separate reasoning model. Final consensus values are determined through aggregation, and expert validation is conducted by board-certified or equivalent pathologists. The framework was applied to over 4,000 pathology reports from The Cancer Genome Atlas (TCGA) and Moffitt Cancer Center. Expert review confirmed high agreement in the TCGA dataset for behavior (100.0%), histology (98.5%), site (95.2%), and grade (95.6%), with lower performance for stage (87.6%) and laterality (84.8%). In the pathology reports from Moffitt (brain, breast, and lung), accuracy remained high across variables, with histology (95.6%), behavior (98.3%), and stage (92.4%), achieving strong agreement. However, certain challenges emerged, such as inconsistent mention of sentinel lymph node details or anatomical ambiguity in biopsy site interpretations. Statistical analyses revealed significant main effects of model type, variable, and organ system, as well as model × variable × organ interactions, emphasizing the role of clinical context in model performance. These results highlight the importance of stratified, multi-organ evaluation frameworks in LLM benchmarking for clinical applications. Textual justifications enhanced interpretability and enabled human reviewers to audit model outputs. Overall, this consensus-based approach demonstrates that locally deployed LLMs can provide a transparent, accurate, and auditable solution for integrating AI-driven data extraction into real-world pathology workflows, including cancer registry abstraction and synoptic reporting.more » « less
An official website of the United States government
