skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-regional economic recovery simulation using an Adaptive Regional Input–Output (ARIO) framework
Award ID(s):
2053014
PAR ID:
10653285
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Journal of Disaster Risk Reduction
Date Published:
Journal Name:
International Journal of Disaster Risk Reduction
Volume:
112
Issue:
C
ISSN:
2212-4209
Page Range / eLocation ID:
104766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measures of foreshock occurrence are systematically examined using earthquake catalogs for eight regions (Italy, southern California, northern California, Costa Rica, Onshore Japan, Alaska, Turkey, and Greece) after imposing a magnitude ≥3.0 completeness level. Foreshocks are identified using three approaches: a magnitude-dependent space + fixed-time windowing method, a nearest-neighbor clustering method, and a modified magnitude-dependent space + variable-time windowing method. The method with fixed-time windows systematically yields higher counts of foreshocks than the other two clustering methods. We find similar counts of foreshocks across the three methods when the magnitude aperture is equalized by including only earthquakes in the magnitude range M*−2≤ M< M*, in which M* is the mainshock magnitude. For most of the catalogs (excluding Italy and southern California), the measured b-values of the foreshocks of all region-specific mainshocks are lower by 0.1–0.2 than b-values of respective aftershocks. Allowing for variable-time windows results in relatively high probabilities of having at least one foreshock in Italy (∼43%–56%), compared to other regional catalogs. Foreshock probabilities decrease to 14%–41% for regions such as Turkey, Greece, and Costa Rica. Similar trends are found when requiring at least five foreshocks in a sequence to be considered. Estimates of foreshock probabilities for each mainshock are method dependent; however, consistent regional trends exist regardless of method, with regions such as Italy and southern California producing more observable foreshocks than Turkey and Greece. Some regions with relatively high background seismicity have comparatively low probabilities of detectable foreshock activity when using methods that account for variable background, possibly due to depletion of near-failure fault conditions by background activity. 
    more » « less
  2. Abstract Due to a spatial turn in the socio-technical transition literature, the geography of energy transitions has recently been taken increasingly seriously, leading to burgeoning research output on regional energy transitions since early 2010. Amidst this wealth of publications, however, it can be difficult to keep track of its diverse and constantly evolving landscape. This editorial therefore aims at developing a framework that allows for bringing multiple approaches to regional energy transitions into conversation with each other and that helps to understand and explain the complexity of these interdependencies in ways that go beyond observing regional variety in energy transitions. 
    more » « less
  3. The bioaccumulation of methylmercury in fish and its biomagnification through the food chain is a major public health concern. Differences in fish methylmercury concentration observed between China and the United States highlight the need for a better understanding of region-specific factors that drive its formation and biological uptake. 
    more » « less
  4. Abstract This paper describes the new Regional Arctic Ocean/sea ice Reanalysis (RARE) with a domain that spans a subpolar/polar cap poleward of 45°N. Sequential data assimilation constrains temperature and salinity using World Ocean Database profiles as well as in situ and satellite SST, and PIOMAS sea ice thickness estimates. The 41-yr (1980–2020) RARE1.15.2 reanalysis with resolution varying between 2 and 5 km horizontally and 1–10 m vertically in the upper 100 m is examined. To explore the impact of resolution RARE1.15.2 is compared to a coarser-resolution SODA3.15.2, which uses the same modeling and data assimilation system. Improving resolution in the reanalysis system improves agreement with observations. It produces stronger more compact currents, enhances eddy kinetic energy, and strengthens along-isopycnal heat and salt transports, but reduces vertical exchanges and thus strengthens upper ocean haline stratification. RARE1.15.2 and SODA3.15.2 are also compared to the Hadley Center EN4.2.2 statistical objective analysis. In regions of reasonable data coverage such as the Nordic seas the three products produce similar time-mean distributions of temperature and salinity. But in regions of poor coverage and in regions where the coverage changes in time EN4.2.2 suffers more from those inhomogeneities. Finally, the impact on the Arctic of interannual temperature fluctuations in the subpolar gyres on the Arctic Ocean is compared. The influence of the subpolar North Pacific is limited to a region surrounding Bering Strait. The influence of the subpolar North Atlantic, in contrast, spreads throughout the Nordic seas and Barents Sea in all three products within two years. Significance StatementThe Arctic Ocean/sea ice system plays crucial roles in climate variability and change by controlling the northern end of the oceanic overturning circulation, the equator to pole air pressure gradient, and Earth’s energy balance. Yet the historical ocean observation set is sparse and inhomogeneous, while ocean dynamics has challengingly fine horizontal and vertical scales. This paper introduces a new Regional Arctic Ocean/sea ice Reanalysis (RARE) whose goal is to use the combined constraints of mesoscale ocean dynamics, historical observations, surface meteorology, and continental runoff in a data assimilation framework to reconstruct historical variability. RARE is used to produce a 41-yr ocean/sea ice reanalysis 1980–2020 whose results are described here. 
    more » « less