skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: On the Feasibility of Distributed Phase Synchronization for Coherent Signal Superposition
In this study, we analyze the feasibility of distributed phase synchronization for coherent signal superposition, a fundamental enabler for paradigms like coherent over-the-air computation (OAC), distributed beamforming, and interference alignment, under mobility and hardware impairments. With the focus on coherent OAC, we introduce phase-coded pilots (PCPs), a strategy where the radios communicate with each other to eliminate the round-trip phase change in the uplink (UL) and downlink (DL) to align the phase of the received symbol at a desired angle. In this study, considering a carrier frequency offset (CFO)-resilient multi-user procedure, we derive the statistics of the phase deviations to assess how fast the phase coherency degrades. Our results show that residual CFO is a major factor determining the duration of phase coherency, in addition to the non-negligible effects of mobility and the number of nodes in the network. We also provide a proof-of-concept demonstration for coherent signal superposition by using off-the-shelf radios to demonstrate the feasibility of PCPs in practice  more » « less
Award ID(s):
2438837
PAR ID:
10653504
Author(s) / Creator(s):
 
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
Distributed phase synchronization, phase offset, residual carrier-frequency offset, over-the-air computation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper explores the potential benefits of combining the use of injection-locking techniques with GPS signals as a common clock source when applied to a low-cost Software Defined Radio (SDR) to improve the accuracy of coherent multiple receivers. Coherent systems impose severe requirements on the frequency stability of the signal source at the receiver. In this work, injection-locked oscillators are used as local clock receivers, which inherently synchronizes the SDR analog digital converter (ADCs) sampling times and keeps the local oscillator locked on to the GPS stimulus periodic signal. This paper illustrates the hardware modifications needed for to the injection locking oscillators of eight RTL-SDR radios and the theory behind it, and experimentally measures the degree of coherency in the frequency, phase and time synchronization to verify the proposed method. The coherency demonstrated in the results prove the feasibility of using beamforming, multiple input multiple output (MIMO) and RF transmitter geo-localization. 
    more » « less
  2. In this paper, we study distributed training by majority vote with the sign stochastic gradient descent (signSGD) along with over-the-air computation (OAC) under local differential privacy constraints. In our approach, the users first clip the local stochastic gradients and inject a certain amount of noise as a privacy enhancement strategy. Subsequently, they activate the indices of OFDM subcarriers based on the signs of the perturbed local stochastic gradients to realize a frequency-shift-keying-based majority vote computation at the parameter server. We evaluate the privacy benefits of the proposed approach and characterize the per-user privacy leakage theoretically. Our results show that the proposed technique improves the privacy guarantees and limits the leakage to a scaling factor of O(1/√K), where K is the number of users, thanks to the superposition property of the wireless channel. With numerical experiments, we show that the proposed non-coherent aggregation is superior to quadraturephase- shift-keying-based coherent aggregation, namely, one-bit digital aggregation (OBDA), in learning accuracy under time synchronization errors when the same privacy enhancement strategy is introduced to both methods. 
    more » « less
  3. In this work, we propose jutted binary modulation on conjugate-reciprocal zeros (J-BMOCZ) for non-coherent communication under a carrier frequency offset (CFO). By introducing asymmetry to the Huffman BMOCZ zero constellation, we exploit the identical aperiodic auto-correlation function of BMOCZ sequences to derive a Fourier-domain metric for CFO estimation. Unlike the existing methods for Huffman BMOCZ, which require a cyclically permutable code (CPC) for pilot-free CFO correction, J-BMOCZ enables the estimation of a CFO without the use of pilots or channel coding. Through numerical simulations in additive white Gaussian noise and fading channels, we show that the bit error rate (BER) loss of J-BMOCZ under a CFO is just 1 dB over Huffman BMOCZ without a CFO. Furthermore, the results show that coded J-BMOCZ achieves better BER performance than Huffman BMOCZ with a CPC. 
    more » « less
  4. Distributed transmit beamforming (DTBF) can allow a swarm of unmanned aerial vehicles (UAVs) to send a common message to a distant target. DTBF among N nodes can provide N 2 times the received power compared to a single node and can reduce interference by confining the signal in a certain direction. However, DTBF requires time, frequency, and phase synchronization. Here, we focus on the issue of phase incoherence at the distributed transmit nodes from two sources—different local oscillators (LOs) and hovering position movement—and how to counteract their impact at the receiver via local decisions, namely, rotation. To investigate how the UAV body and its rotation can affect phase coherency, we conduct controlled in-field experiments where we control the phase offset at two distributed antennas and measure the received signal level at four antenna positions on a drone for various rotation angles. We show that significant improvements can be achieved at the receiver through rotation. We also show that there exists an optimal combination of UAV rotation angle and antenna position on the drone to mitigate the effects of phase incoherence among the distributed transmitters. Finally, we demonstrate an interesting trade-off where, due to the heterogeneous nature of the UAV body, rotation angles that yield maximum beamforming gains might not result in the best average (or minimum) beamformed signal level across all possible phase errors at the distributed transmitters. 
    more » « less
  5. In quantum computing and information technology, the coherent superposition of states is an essential topic for realizing the physical state of data processing and storage. The fundamentals of current technology, a quantum bit, have limitations due to the collapse and decoherence of wave function, which hinders the superposition of states. We eliminate the limitations by introducing the elastic bit generated through the Hertz-type nonlinearity of granular beads. This study shows the experimental formation of the elastic bit in a coupled granular network manipulated by external harmonic excitation. The excitation generates a phase-dependent dynamic movement, and mapping onto the energy states of the linear vibration modes forms the coherent superposition of states. This state vector component comes from the amplitude of the coherent states, which is projected into the Hilbert space through time dependency. The coherent states represent an actual amplitude, which makes the elastic bit susceptible to decoherence. The elastic bit also demonstrates quantum operation, showcasing the Hadamard gate, which maps one superposed state to another. These characteristics of the elastic bit pave the way for sustainable quantum computation and data storage. 
    more » « less