skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Early Shock Cooling Observations and Progenitor Constraints of Type IIb Supernova SN 2024uwq
Abstract We present early multiwavelength photometric and spectroscopic observations of the Type IIb supernova SN 2024uwq, capturing its shock-cooling emission phase and double-peaked light-curve evolution. Early spectra reveal broad Hα(v ∼ 15,500 km s−1) and HeIP Cygni profiles of similar strengths. Over time the HeIlines increase in strength while the Hαdecreases, consistent with a hydrogen envelope (Menv = 0.7–1.35M) overlying helium-rich ejecta. Analytic modeling of early shock cooling emission and bolometric light analysis constrains the progenitor to a partially stripped star with radiusR = 10–60R, consistent with a blue/yellow supergiant with an initial zero-age main-sequence mass of 12–20Mlikely stripped via binary interaction. SN 2024uwq occupies a transitional position between compact and extended Type IIb supernovae, highlighting the role of binary mass transfer efficiency in shaping a continuum of stripped-envelope progenitors. Our results underscore the importance of early UV/optical observations to characterize shock breakout signatures critical to map the diversity in evolutionary pathways of massive stars. Upcoming time-domain surveys, including Rubin Observatory’s LSST and UV missions like ULTRASAT and UVEX, will revolutionize our ability to systematically capture these early signatures, probing the full diversity of stripped progenitors and their explosive endpoints.  more » « less
Award ID(s):
1911151 1911225
PAR ID:
10653561
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
990
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2Mand an envelope radius of ≈50R. The extremely low nickel mass and low ejecta mass (≈0.5M) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys. 
    more » « less
  2. Abstract We present optical and near-infrared (NIR) observations of SN 2022crv, a stripped-envelope supernova in NGC 3054, discovered within 12 hr of explosion by the Distance Less Than 40 Mpc Survey. We suggest that SN 2022crv is a transitional object on the continuum between Type Ib supernovae (SNe Ib) and Type IIb supernovae (SNe IIb). A high-velocity hydrogen feature (∼ −20,000 to −16,000 km s−1) was conspicuous in SN 2022crv at early phases, and then quickly disappeared. We find that a hydrogen envelope of ∼10−3Mcan reproduce the observed behavior of the hydrogen feature. The lack of early envelope cooling emission implies that SN 2022crv had a compact progenitor with an extremely low amount of hydrogen. A nebular spectral analysis shows that SN 2022crv is consistent with the explosion of a He star with a final mass of ∼4.5–5.6Mthat evolved from a ∼16 to 22Mzero-age main-sequence star in a binary system with ∼1.0–1.7Mof oxygen finally synthesized in the core. In order to retain such a small amount of hydrogen, the initial orbital separation of the binary system is likely larger than ∼1000R. The NIR spectra of SN 2022crv show a unique absorption feature on the blue side of the Heiline at ∼1.005μm. This is the first time such a feature has been observed in SNe Ib/IIb, and it could be due to Sr II. Further detailed modeling of SN 2022crv can shed light on the progenitor and the origin of the mysterious absorption feature in the NIR. 
    more » « less
  3. Abstract We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its light curve, similarly to other well-studied Type IIb SNe. This early-time emission is thought to originate from the cooling of the extended outer hydrogen-rich (H-rich) envelope of the progenitor star that is shock heated by the SN explosion. We compare SN 2020bio to a sample of other double-peaked Type IIb SNe in order to investigate its progenitor properties. Analytical model fits to the early-time emission give progenitor radius (≈100–1500 R ⊙ ) and H-rich envelope mass (≈0.01–0.5 M ⊙ ) estimates that are consistent with other Type IIb SNe. However, SN 2020bio displays several peculiarities, including (1) weak H spectral features indicating a greater amount of mass loss than other Type IIb progenitors; (2) an underluminous secondary light-curve peak that implies a small amount of synthesized 56 Ni ( M Ni ≈0.02 M ⊙ ); and (3) low-luminosity nebular [O i ] and interaction-powered nebular features. These observations are more consistent with a lower-mass progenitor ( M ZAMS ≈ 12 M ⊙ ) that was stripped of most of its H-rich envelope before exploding. This study adds to the growing diversity in the observed properties of Type IIb SNe and their progenitors. 
    more » « less
  4. Abstract We present extensive observations of the Type II supernova (SN II) SN 2023ufx, which is likely the most metal-poor SN II observed to date. It exploded in the outskirts of a low-metallicity (Zhost∼ 0.1Z) dwarf (Mg= −13.39 ± 0.16 mag,rproj∼ 1 kpc) galaxy. The explosion is luminous, peaking atMg≈ −18.5 mag, and shows rapid evolution. Ther-band (pseudobolometric) light curve has a shock-cooling phase lasting 20 (17) days followed by a 19 (23) day plateau. The entire optically thick phase lasts only ≈55 days following explosion, indicating that the red supergiant progenitor had a thinned H envelope prior to explosion. The early spectra obtained during the shock-cooling phase show no evidence for narrow emission features and limit the preexplosion mass-loss rate to M ̇ 10 3 Myr−1. The photospheric-phase spectra are devoid of prominent metal absorption features, indicating a progenitor metallicity of ≲0.1Z. The seminebular (∼60–130 days) spectra reveal weak Feii, but other metal species typically observed at these phases (Tiii, Scii, and Baii) are conspicuously absent. The late-phase optical and near-infrared spectra also reveal broad (≈104km s−1) double-peaked Hα, Pβ, and Pγemission profiles suggestive of a fast outflow launched during the explosion. Outflows are typically attributed to rapidly rotating progenitors, which also prefer metal-poor environments. This is only the second SN II with ≲0.1Zand both exhibit peculiar evolution, suggesting a sizable fraction of metal-poor SNe II have distinct properties compared to nearby metal-enriched SNe II. These observations lay the groundwork for modeling the metal-poor SNe II expected in the early Universe. 
    more » « less
  5. Abstract We report the results of a rapid follow-up campaign on the Type IIb supernova (SN) 2022hnt. We present a daily, multiband, photometric follow-up using the Las Cumbres Observatory, the Zwicky Transient Facility, the orbiting Swift observatory, and the Asteroid Terrestrial-impact Last Alert System. A distinctive feature in the light curve of SN 2022hnt and other IIb SNe is an early narrow peak prior to the56Ni peak caused by rapid shock cooling of the hydrogen envelope, which can serve as an important probe of the properties of the massive progenitor star in the moments before explosion. Using SN 2022hnt as a case study, we demonstrate a framework of considerations for the application of shock cooling models to type IIb SNe, outlining a consistent procedure for future surveys of Type IIb SNe progenitor and explosion properties. We fit several recent models of shock-cooling emission and obtain progenitor radii between ∼50 and ∼100R, as well as hydrogen-enriched envelope masses between ∼0.01 and ∼0.1M, both consistent with values for other IIb SNe. One of these models is the model of J. Morag et al., marking the first time this model has been applied to a Type IIb SN. Finally, we evaluate contrasting predictions between shock-cooling models to construct a fiducial parameter set that can be used for comparison to other SNe. 
    more » « less