Abstract The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum.
more »
« less
This content will become publicly available on March 26, 2026
Markarian 590: the AGN awakens
ABSTRACT Changing-look active galactic nucleus Mkn 590 recently underwent a sudden ‘re-ignition’, marked by substantial increases in optical/ultravilolet (UV) and X-ray continuum flux since last couple of years. Swift-XRT observations revealed the re-emergence of a soft X-ray excess as the source transitioned from a low-flux state in July 2023 to a significantly higher flux state in October 2024. This evolution was in response to an order-of-magnitude increase in extreme-UV continuum emission, detected by Swift-UVOT. Follow-up optical spectra from FLOYDS/Faulkes confirmed the enhancement of dynamically broadened Balmer lines, He ii emission, and Fe ii complex. As the Eddington fraction increased by a factor of $$\sim$$20 over the last 20 months, we found clear evidence of formation of a warm corona, strongly linked to the cold accretion disc underneath. Based on our multiwavelength study on recent data, we propose that Mkn 590 is currently becoming a Seyfert-1.2, similar to its state in 1990s.
more »
« less
- Award ID(s):
- 1911225
- PAR ID:
- 10653570
- Publisher / Repository:
- MNRAS
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society: Letters
- Volume:
- 540
- Issue:
- 1
- ISSN:
- 1745-3925
- Page Range / eLocation ID:
- L14 to L20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the first results from a 100-day Swift, NICER, and ground-based X-ray–UV–optical reverberation mapping campaign of the Narrow-line Seyfert 1 Mrk 335, when it was in an unprecedented low X-ray flux state. Despite dramatic suppression of the X-ray variability, we still observe UV–optical lags as expected from disk reverberation. Moreover, the UV–optical lags are consistent with archival observations when the X-ray luminosity was >10 times higher. Interestingly, both low- and high-flux states reveal UV–optical lags that are 6–11 times longer than expected from a thin disk. These long lags are often interpreted as due to contamination from the broad line region; however theu-band excess lag (containing the Balmer jump from the diffuse continuum) is less prevalent than in other active galactic nuclei. The Swift campaign showed a low X-ray-to-optical correlation (similar to previous campaigns), but NICER and ground-based monitoring continued for another 2 weeks, during which the optical rose to the highest level of the campaign, followed ∼10 days later by a sharp rise in X-rays. While the low X-ray countrate and relatively large systematic uncertainties in the NICER background make this measurement challenging, if the optical does lead X-rays in this flare, this indicates a departure from the zeroth-order reprocessing picture. If the optical flare is due to an increase in mass accretion rate, this occurs on much shorter than the viscous timescale. Alternatively, the optical could be responding to an intrinsic rise in X-rays that is initially hidden from our line of sight.more » « less
-
ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.more » « less
-
Context.The early-type galaxy SDSS J133519.91+072807.4 (hereafter SDSS1335+0728), which had exhibited no prior optical variations during the preceding two decades, began showing significant nuclear variability in theZwickyTransient Facility (ZTF) alert stream from December 2019 (as ZTF19acnskyy). This variability behaviour, coupled with the host-galaxy properties, suggests that SDSS1335+0728 hosts a ∼106 M⊙black hole (BH) that is currently in the process of “turning on”. Aims.We present a multi-wavelength photometric analysis and spectroscopic follow-up performed with the aim of better understanding the origin of the nuclear variations detected in SDSS1335+0728. Methods.We used archival photometry (from WISE, 2MASS, SDSS, GALEX, eROSITA) and spectroscopic data (from SDSS and LAMOST) to study the state of SDSS1335+0728 prior to December 2019, and new observations fromSwift, SOAR/Goodman, VLT/X-shooter, and Keck/LRIS taken after its turn-on to characterise its current state. We analysed the variability of SDSS1335+0728 in the X-ray/UV/optical/mid-infrared range, modelled its spectral energy distribution prior to and after December 2019, and studied the evolution of its UV/optical spectra. Results.From our multi-wavelength photometric analysis, we find that: (a) since 2021, the UV flux (fromSwift/UVOT observations) is four times brighter than the flux reported by GALEX in 2004; (b) since June 2022, the mid-infrared flux has risen more than two times, and theW1 − W2 WISE colour has become redder; and (c) since February 2024, the source has begun showing X-ray emission. From our spectroscopic follow-up, we see that (i) the narrow emission line ratios are now consistent with a more energetic ionising continuum; (ii) broad emission lines are not detected; and (iii) the [OIII] line increased its flux ∼3.6 years after the first ZTF alert, which implies a relatively compact narrow-line-emitting region. Conclusions.We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼106 M⊙AGN that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.more » « less
-
ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $$T \sim 2.5 \times 10^{4} \, {\rm K}$$, a maximum observed luminosity of $$L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$$, and a radiated energy of $$E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).more » « less
An official website of the United States government
