Abstract We investigate the potential of using a sample of very high-redshift (2 ≲z≲ 6) (VHZ) Type Ia supernovae (SNe Ia) attainable by JWST on constraining cosmological parameters. At such high redshifts, the age of the universe is young enough that the VHZ SN Ia sample comprises the very first SNe Ia of the universe, with progenitors among the very first generation of low-mass stars that the universe has made. We show that the VHZ SNe Ia can be used to disentangle systematic effects due to the luminosity distance evolution with redshifts intrinsic to SN Ia standardization. Assuming that the systematic evolution can be described by a linear or logarithmic formula, we found that the coefficients of this dependence can be determined accurately and decoupled from cosmological models. Systematic evolution as large as 0.15 mag and 0.45 mag out toz= 5 can be robustly separated from popular cosmological models for linear and logarithmic evolution, respectively. The VHZ SNe Ia will lay the foundation for quantifying the systematic redshift evolution of SN Ia luminosity distance scales. When combined with SN Ia surveys at comparatively lower redshifts, the VHZ SNe Ia allow for the precise measurement of the history of the expansion of the universe fromz∼ 0 to the epoch approaching reionization.
more »
« less
This content will become publicly available on June 1, 2026
Supernovae at distances <40 Mpc: II. Supernova rate in the local Universe
Context. This is the second paper of a series aiming to determine the birth rates of supernovae (SNe) in the local Universe. Aims. We aimed to estimate the SN rates in the local Universe and fit the delay-time distribution of type Ia SNe (SNe Ia) to put constraints on their progenitor scenarios. Methods. We performed a Monte Carlo simulation to estimate volumetric rates using the nearby SN sample introduced in Paper I. The rate evolution of core-collapse (CC) SNe closely follows the evolution of the cosmic star formation history, while the rate evolution of SNe Ia involves the convolution of the cosmic star formation history and a two-component delay-time distribution including a power law and a Gaussian component. Results. The volumetric rates of type Ia, Ibc, and II SNe are derived as 0.325 ± 0.040−0.010+0.016, 0.160 ± 0.028−0.014+0.044, and 0.528 ± 0.051−0.013+0.162(in units of 10−4yr−1Mpc−3h703), respectively. The rate of CCSNe (0.688 ± 0.078−0.027+0.0206) is consistent with previous estimates, which trace the star formation history. Conversely, the newly derived local SN Ia rate is larger than existing results given at redshifts 0.01 < z < 0.1, favoring an increased rate from the Universe at z ∼ 0.1 to the local Universe at z < 0.01. A two-component model effectively reproduces the rate variation, with the power law component accounting for the rate evolution at larger redshifts and the Gaussian component with a delay time of 12.63 ± 0.38 Gyr accounting for the local rate evolution. This delayed component, with its exceptionally long delay time, suggests that the progenitors of these SNe Ia were formed around 1 Gyr after the birth of the Universe, which could only be explained by a double-degenerate progenitor scenario. Comparison with the Palomar Transient Factory (PTF) sample of SNe Ia at z = 0.073 and the morphology of their host galaxies, reveals that the increased SN Ia rate at z < 0.01 is primarily due to the SNe Ia of massive E and S0 galaxies with old stellar populations. Based on the above results, we estimate the Galactic SN rate as 3.08 ± 1.29 per century.
more »
« less
- Award ID(s):
- 1911225
- PAR ID:
- 10653571
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- A&A
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 698
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. This is the first paper in a series aiming to determine the fractions and birth rates of various types of supernovae (SNe) in the local Universe. Aims. In this paper, we aim to construct a complete sample of SNe in the nearby Universe and provide more precise measurements of subtype fractions. Methods. We carefully selected our SN sample at a distance of less than 40 Mpc mainly from wide-field surveys conducted over the years from 2016 to 2023. Results. The sample contains a total of 211 SNe, including 109 SNe II, 69 SNe Ia, and 33 SNe Ibc. With the aid of sufficient spectra, we obtained relatively accurate subtype classifications for all SNe in this sample. After corrections for the Malmquist bias, this volumelimited sample yielded fractions of SNe Ia, SNe Ibc, and SNe II of 30.4−11.5+3.7%, 16.3−7.4+3.7%, and 53.3−18.7+9.5%, respectively. In the SN Ia sample, the fraction of the 91T-like subtype becomes relatively low (~5.4%), while that of the 02cx-like subtype shows a moderate increase (~6.8%). In the SN Ibc sample, we find significant fractions of broadlined SNe Ic (~18.0%) and SNe Ibn (~8.8%). The fraction of the 87A-like subtype was determined to be ~2.3%, indicating rare explosions from blue supergiant stars. We find that SNe Ia show a double peak number distribution in S0- and Sc-type host galaxies, which may serve as straightforward evidence for the presence of “prompt” and “delayed” progenitor components that give rise to SN Ia explosions. Several subtypes of SNe such as 02cx-like SNe Ia, broadlined SNe Ic, and SNe IIn (and perhaps SNe Ibn) are found to occur preferentially in less massive spiral galaxies (i.e., with stellar mass <0.5×1010Mʘ), thus favoring their associations with young stellar progenitors. Moreover, the 02cx-like subtype shows a trend of exploding in the outer skirt of their hosts, which is suggestive of metal-poor progenitors.more » « less
-
Abstract We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M⊙) and56Ni masses (≲0.04M⊙) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.more » « less
-
ABSTRACT Type Iax supernovae (SNe Iax) are the most common class of peculiar SNe. While they are thought to be thermonuclear white-dwarf (WD) SNe, SNe Iax are observationally similar to, but distinct from SNe Ia. Unlike SNe Ia, where roughly 30 per cent occur in early-type galaxies, only one SN Iax has been discovered in an early-type galaxy, suggesting a relatively short delay time and a distinct progenitor system. Furthermore, one SN Iax progenitor system has been detected in pre-explosion images with its properties consistent with either of two models: a short-lived (<100 Myr) progenitor system consisting of a WD primary and a He-star companion, or a singular Wolf–Rayet progenitor star. Using deep Hubble Space Telescope images of nine nearby SN Iax host galaxies, we measure the properties of stars within 200 pc of the SN position. The ages of local stars, some of which formed with the SN progenitor system, can constrain the time between star formation and SN, known as the delay time. We compare the local stellar properties to synthetic photometry of single-stellar populations, fitting to a range of possible delay times for each SN. With this sample, we uniquely constrain the delay-time distribution for SNe Iax, with a median and 1σ confidence interval delay time of $$63_{- 15}^{+ 58} \times 10^{6}$$ yr. The measured delay-time distribution provides an excellent constraint on the progenitor system for the class, indicating a preference for a WD progenitor system over a Wolf–Rayet progenitor star.more » « less
-
ABSTRACT The scaling of the specific Type Ia supernova (SN Ia) rate with host galaxy stellar mass $$\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$$ as measured in ASAS-SN and DES strongly suggests that the number of SNe Ia produced by a stellar population depends inversely on its metallicity. We estimate the strength of the required metallicity dependence by combining the average star formation histories (SFHs) of galaxies as a function of their stellar mass with the mass–metallicity relation (MZR) for galaxies and common parametrizations for the SN Ia delay-time distribution. The differences in SFHs can account for only ∼30 per cent of the increase in the specific SN Ia rate between stellar masses of M⋆ = 1010 and 107.2 M⊙. We find that an additional metallicity dependence of approximately ∼Z−0.5 is required to explain the observed scaling. This scaling matches the metallicity dependence of the close binary fraction observed in APOGEE, suggesting that the enhanced SN Ia rate in low-mass galaxies can be explained by a combination of their more extended SFHs and a higher binary fraction due to their lower metallicities. Due to the shape of the MZR, only galaxies below M⋆ ≈ 3 × 109 M⊙ are significantly affected by the metallicity-dependent SN Ia rates. The $$\dot{\text{N}}_\text{Ia} / \text{M}_\star \sim \text{M}_\star ^{-0.3}$$ scaling becomes shallower with increasing redshift, dropping by factor of ∼2 at 107.2 M⊙ between z = 0 and 1 with our ∼Z−0.5 scaling. With metallicity-independent rates, this decrease is a factor of ∼3. We discuss the implications of metallicity-dependent SN Ia rates for one-zone models of galactic chemical evolution.more » « less
An official website of the United States government
