skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Comparing inelastic deformations and strength in dense FCC and HCP granular crystals: Experiments and models
Randomly distributed granular materials offer a rich landscape of mechanisms but their tunability is limited. Taking inspiration from crystallography and granular mechanics, we fabricated and tested fully dense cohesive FCC and HCP granular crystals, and developed granular crystal plasticity models to investigate their relative strength and deformation mechanisms. Geometrically, switching from FCC to HCP is remarkably simple and only involves a 60° rotation about the midplane of individual dodecahedral grains. However, the effect of this transformation on crystallography, properties and mechanics are profound. This rotation breaks several symmetries, and while additional slip systems are made available (prismatic, pyramidal.) compared to the {111} family in FCC, each of the families in HCP contain a smaller number of total slip planes. As a result, slip in HCP is in general more difficult to activate resulting in an average strength 50% greater than in FCC. We also observed mechanisms that are unique to granular crystals: micro-buckling in FCC and HCP, and splaying in HCP crystals loaded along the c-axis. These granular crystals offer powerful and versatile platforms for new generation mechanical metamaterials with tunable inelastic deformation, energy absorption and strength. For example, the granular architecture amplifies the properties of the adhesive by about one order of magnitude, so that attractive rheologies maybe be translated into useful responses in compression.  more » « less
Award ID(s):
2033991
PAR ID:
10653680
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of the Mechanics and Physics of Solids
Volume:
204
Issue:
C
ISSN:
0022-5096
Page Range / eLocation ID:
106305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Typical granular materials are far from optimal in terms of mechanical performance: Random packing leads to poor load transfer in the form of thin and dispersed force lines within the material, to inhomogeneous jamming, and to strain localization. In addition, localized contacts between individual grains result in low stiffness, strength and brittleness. Here we propose a granular material that simultaneously embodies three approaches to increase strength: geometrical design of individual grains, crystallization, and infiltration by an adhesive. Using mechanical vibrations, we assembled millimeter-scale 3D printed grains with rhombic dodecahedral shapes into fully dense FCC granular crystals. We then infiltrated the granular structure with a tacky, polyacrylic adhesive that is orders of magnitude weaker than the grains, but which provides sustained adhesion over large interfacial displacements. The resulting material is a fully dense, free-standing space filling granular crystal. Compressive tests show that these granular crystals are up to 60 times stronger than randomly packed cohesive spheres and they display a rich set of mechanisms: Nonlinear deformations, crystal plasticity reminiscent of atomistic mechanisms, cross-slip, shear-induced dilatancy, micro-buckling, and tensile strength. To capture some of these mechanisms we developed a multiscale model that incorporates local cohesion between grains, resolved shear and normal stresses on available slip planes, and prediction of compressive strength as function of loading orientation. The predicted strength is highly anisotropic and agrees well with the compression experiments. Once fully understood and harnessed, we envision that these mechanisms will lead to granular engineering materials with unusual combinations of mechanical performances attractive for many applications. 
    more » « less
  2. Directed energy deposition (DED)-based additive manufacturing (AM) was employed to fabricate three distinct bimetallic compositions to understand the role interface for the deformation behavior of bimetallic structures under compressive loading. Commercially pure titanium (CP Ti) with a hexagonal closed packed (HCP) structure, nickel (Ni) with a face-centered cubic (FCC), and tantalum (Ta) with a body-centered cubic (BCC) structure were selected to understand the deformation behavior within the pure metals and damage accumulation at the bimetallic interface. By incorporating the combination of these materials, such as Ni-Ti, Ni-Ta, and Ta-Ti, we aimed to manufacture layered-base polycrystalline composite structures with FCC-HCP, FCC-BCC, and BCC-HCP crystal unit cells, respectively. In Ni-Ti and Ni-Ta bimetallic structures, it was determined that deformation is controlled by the Ni region, where the highest deflection occurs when Ni bulges out and makes lateral stress at the interface, resulting in crack initiation, propagation, and failure of the structure. Structural edges were found to experience the highest deformation, prompting grain inclination towards the <111> crystal orientation, resulting in a favorable orientation for dislocation slip and a higher Taylor factor. However, strong interfacial bonding and similar Young's modulus between Ta and Ti altered the deformation mechanisms to twinning formation in the Ti region and observed buckling of the entire structure without significant failure at the interface. 
    more » « less
  3. In this work, the deformation mechanisms underlying the room temperature deformation of the pseudomorphic body centered cubic (BCC) Mg phase in Mg/Nb nanolayered composites are studied. Nanolayered composites comprised of 50% volume fraction of Mg and Nb were synthesized using physical vapor deposition with the individual layer thicknesses h of 5, 6.7, and 50 nm. At the lower layer thicknesses of h = 5 and 6.7 nm, Mg has undergone a phase transition from HCP to BCC such that it formed a coherent interface with the adjoining Nb phase. Micropillar compression testing normal and parallel to the interface plane shows that the BCC Mg nanolayered composite is much stronger and can sustain higher strains to failure than the HCP Mg nanolayered composite. A crystal plasticity model incorporating confined layer slip is presented and applied to link the observed anisotropy and hardening in the deformation response to the underlying slip mechanisms. 
    more » « less
  4. Abstract Mechanisms of hexagonal close-packed (HCP) to body-centered cubic (BCC) phase transformation in Mg single crystals are observed using a combination of polychromatic beam Laue diffraction and monochromatic beam powder diffraction techniques under quasi-hydrostatic pressures of up to 58 ± 2 GPa at ambient temperature. Although experiments were performed with both He and Ne pressure media, crystals inevitably undergo plastic deformation upon loading to 40–44 GPa. The plasticity is accommodated by dislocation glide causing local misorientations of up to 1°–2°. The selected crystals are tracked by mapping Laue diffraction spots up to the onset of the HCP to BCC transformation, which is determined to be at a pressure of 56.6 ± 2 GPa. Intensity of the Laue reflections from HCP crystals rapidly decrease but no reflections from crystalline BCC phase are observed with a further increase of pressure. Nevertheless, the powder diffraction shows the formation of 110 BCC peak at 56.6 GPa. The peak intensity increases at 59.7 GPa. Upon the full transformation, a powder-like BCC aggregate is formed revealing the destructive nature of the HCP to BCC transformation in single crystals of Mg. 
    more » « less
  5. Twinning is a major mechanism of plastic deformation in hexagonal close-packed (hcp) structures. However, a mechanistic understanding of twin nucleation and growth has yet to be established. This paper reviews the recent progress in the understanding of twinning in hcp materials—particularly the newly discovered phase transformation-mediated twinning mechanisms—in terms of crystallographical analysis, theoretical mechanics calculations, and numerical simulations. Moreover, the relationship between phase transformation-mediated twinning mechanisms and twinning dislocations are presented, forming a unified understanding of deformation twinning. Finally, this paper also reviews the recent studies on transformation twins that are formed in hcp martensite microstructures after various phase transformations, highlighting the critical role of the mechanical loading in engineering a transformation twin microstructure. 
    more » « less