skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Not All Heterogeneity Is Equal: Length Scale of Frictional Property Variation as a Control on Subduction Megathrust Sliding Behavior
Abstract Heterogeneity in geometry, stress, and material properties is widely invoked to explain the observed spectrum of slow earthquake phenomena. However, the effects of length scale of heterogeneity on macroscopic fault sliding behavior remain underexplored. We investigate this question for subduction megathrusts, via linear stability analysis and quasi‐dynamic simulations of slip on a dipping fault characterized by rate‐and‐state friction. Frictional heterogeneity is imposed through alternating velocity‐strengthening and velocity‐weakening (VW) patches, over length scales spanning from those representative of basement relief (several km) to the entrainment of contrasting lithologies (100s of m). The resulting fault behavior is controlled by: (a) the average frictional properties of the fault, and (b) the size of VW blocks relative to a critical length scale. Reasonable ranges of these properties yield sliding behaviors spanning from stable sliding, to slow and seismic slip events that are confined within VW blocks or propagate along the entire fault.  more » « less
Award ID(s):
2123255 2319850 2319847
PAR ID:
10653685
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneity in geometry, stress, and material properties is widely invoked to explain the observed spectrum of slow earthquake phenomena. However, the effects of length scale of heterogeneity on macroscopic fault sliding behavior remain underexplored. We investigate this question for subduction megathrusts, via linear stability analysis and quasi-dynamic simulations of slip on a dipping fault characterized by rate-and-state friction (RSF). Frictional heterogeneity is imposed through alternating velocity-strengthening (VS) and velocity-weakening (VW) patches, over length scales spanning from those representative of basement relief (several km) to the entrainment of contrasting lithologies (100s of m). The resulting fault behavior is controlled by: (1) the average frictional properties of the fault, and (2) the size of VW blocks relative to a critical length scale. Reasonable ranges of these properties yield sliding behaviors spanning from stable sliding, to slow and seismic slip events that are confined within VW blocks or propagate along the entire fault. 
    more » « less
  2. Abstract Many natural faults are believed to consist of velocity weakening (VW) patches surrounded by velocity strengthening (VS) sections. Numerical studies routinely employ this framework to study earthquake sequences including repeating earthquakes. In this laboratory study, we made a VW asperity, of lengthL, from a bare Poly(methyl methacrylate) PMMA frictional interface and coated the surrounding interface with Teflon to make VS fault sections. Behavior of this isolated asperity was studied as a function ofL(ranging from 100 to 400 mm) and the critical nucleation length, , which is inversely proportional to the applied normal stress (2–16 MPa). Consistent with recent numerical simulations, we observed aseismic slip for  < 2, periodic slip for 2 <  < 6, and non‐periodic slip for 10 < . Furthermore, we compared the experiments whereLwas contained by VS material to standard stick‐slip events whereLwas bounded by free surfaces (i.e.,L = the total sample length). The free surface case produced ∼10 times larger slip during stick‐slip events compared to the contained fault ruptures, even with identical . This disparity highlights how standard, complete‐rupture stick‐slip events differ from contained events expected in nature, due to both the free surface conditions and the heterogeneous normal stress along the fault near the free ends, as confirmed by Digital Image Correlation analysis. This study not only introduces the Teflon coating experimental technique for containing laboratory earthquake ruptures, but also highlights the utility of as a predictive parameter for earthquake behavior. 
    more » « less
  3. Whether Earth materials exhibit frictional creep or catastrophic failure is a crucial but unresolved problem in predicting landslide and earthquake hazards. Here, we show that field-scale observations of sliding velocity and pore water pressure at two creeping landslides are explained by velocity-strengthening friction, in close agreement with laboratory measurements on similar materials. This suggests that the rate-strengthening friction commonly measured in clay-rich materials may govern episodic slow slip in landslides, in addition to tectonic faults. Further, our results show more generally that transient slow slip can arise in velocity-strengthening materials from modulation of effective normal stress through pore pressure fluctuations. This challenges the idea that episodic slow slip requires a narrow range of transitional frictional properties near the stability threshold, or pore pressure feedbacks operating on initially unstable frictional slip. 
    more » « less
  4. SUMMARY This paper examines the linear stability of sliding on faults embedded in a 2-D elastic medium that obey rate and state friction and have a finite length and/or are near a traction-free surface. Results are obtained using a numerical technique that allows for analysis of systems with geometrical complexity and heterogeneous material properties; however only systems with homogeneous frictional and material properties are examined. Some analytical results are also obtained for the special case of a fault that is parallel to a traction-free surface. For velocity-weakening faults with finite length, there is a critical fault length $$L^{*}$$ for unstable sliding that is analogous to the critical wavelength $$h^{*}$$ that is usually derived from infinite fault systems. Faults longer than $$L^{*}$$ are linearly unstable to perturbations of any length. On vertical strike-slip faults or faults in a full-space $$L^{*} \approx h^{*}/e$$, where e is Euler’s number. For dip-slip faults near a traction-free surface $$L^{*} \le h^{*}/e$$ and is a function of dip angle $$\beta$$, burial depth d of the fault’s up-dip edge and friction coefficient. In particular, $$L^{*}$$ is at least an order of magnitude smaller than $$h^{*}$$ on shallowly dipping ($$\beta < 10^\circ$$) faults that intersect the traction-free surface. Additionally, $$L^{*} \approx h^{*}/e$$ on dip-slip faults with burial depths $$d \ge h^{*}$$. For sliding systems that can be treated as a thin layer, such as landslides, glaciers or ice streams, $$L^{*} = h^{*}/2$$. Finally, conditions are established for unstable sliding on infinitely-long, velocity-strengthening faults that are parallel to a traction-free surface. 
    more » « less
  5. Abstract Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure‐solution creep, and crack sealing, explains the low‐temperature stability transition from steady‐state velocity‐strengthening to velocity‐weakening as a function of slip‐rate and temperature. In addition, capturing the transition from cataclastic flow to semi‐brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions. 
    more » « less