skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Safety on the Fly: Constructing Robust Safety Filters via Policy Control Barrier Functions at Runtime
Award ID(s):
2008686
PAR ID:
10653722
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
10
Issue:
10
ISSN:
2377-3774
Page Range / eLocation ID:
10058 to 10065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discounted-sum inclusion (DS-inclusion, in short) formalizes the goal of comparing quantitative dimensions of systems such as cost, resource consumption, and the like, when the mode of aggregation for the quantitative dimension is discounted-sum aggregation. Discounted-sum comparator automata, or DS-comparators in short, are Buechi automata that read two in nite sequences of weights synchronously and relate their discounted-sum. Recent empirical investigations have shown that while DS-comparators enable competitive algorithms for DS-inclusion, they still suffer from the scalability bottleneck of Bueuchi operations. Motivated by the connections between discounted-sum and Buechi automata, this paper undertakes an investigation of language-theoretic properties of DS-comparators in order to mitigate the challenges of Buechi DS-comparators to achieve improved scalability of DS-inclusion. Our investigation uncovers that DS-comparators possess safety and co-safety language-theoretic properties. As a result, they enable reductions based on subset construction-based methods as opposed to higher complexity Buechi complementation, yielding tighter worst-case complexity and improved empirical scalability for DS-inclusion. 
    more » « less