skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 13, 2026

Title: The First Radio-bright Off-nuclear Tidal Disruption Event AT 2024tvd Reveals the Fastest-evolving Double-peaked Radio Emission
Abstract We present the first multiepoch broadband radio and millimeter monitoring of an off-nuclear tidal disruption event (TDE) using the Very Large Array, the Atacama Large Millimeter/submillimeter Array, the Allen Telescope Array, the Arcminute Microkelvin Imager Large Array, and the Submillimeter Array. The off-nuclear TDE AT 2024tvd exhibits double-peaked radio light curves and the fastest-evolving radio emission observed from a TDE to date. With respect to the optical discovery date, the first radio flare rises faster thanFν ∼ t9at Δt = 88–131 days and then decays as fast asFν ∼ t−6. The emergence of a second radio flare is observed at Δt ≈ 194 days with an initial fast rise ofFν ∼ t18and an optically thin decline ofFν ∼ t−12. We interpret these observations in the context of a self-absorbed and free–free absorbed synchrotron spectrum, while accounting for both synchrotron and inverse Compton cooling. We find that a single prompt outflow cannot easily explain these observations and that it is likely that either there is only one outflow that was launched at Δt ∼ 80 days or there are two distinct outflows, with the second launched at Δt ∼ 170–190 days. The nature of these outflows, whether sub-, mildly, or ultrarelativistic, is still unclear, and we explore these different scenarios. Finally, we find a temporal coincidence between the launch time of the first radio-emitting outflow and the onset of a power-law component in the X-ray spectrum, attributed to inverse Compton scattering of thermal photons.  more » « less
Award ID(s):
2107932
PAR ID:
10653785
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
992
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow fromE∼ 1046toE∼ 1049erg with outflow speedβ≈ 0.05, while the off-axis relativistic jet solution instead suggestsE≈ 1052erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced. 
    more » « less
  2. Abstract We present late-time radio/millimeter (as well as optical/UV and X-ray) detections of tidal disruption event (TDE) AT2018hyz, spanning 970–1300 d after optical discovery. In conjunction with earlier deeper limits, including those at ≈700 days, our observations reveal rapidly rising emission at 0.8–240 GHz, steeper than F ν ∝ t 5 relative to the time of optical discovery. Such a steep rise cannot be explained in any reasonable scenario of an outflow launched at the time of disruption (e.g., off-axis jet, sudden increase in the ambient density), and instead points to a delayed launch. Our multifrequency data allow us to directly determine the radius and energy of the radio-emitting outflow, and we find from our modeling that the outflow was launched ≈750 days after optical discovery. The outflow velocity is mildly relativistic, with β ≈ 0.25 and ≈0.6 for a spherical geometry and a 10° jet geometry, respectively, and the minimum kinetic energy is E K ≈ 5.8 × 10 49 and ≈6.3 × 10 49 erg, respectively. This is the first definitive evidence for the production of a delayed mildly relativistic outflow in a TDE; a comparison to the recently published radio light curve of ASASSN-15oi suggests that the final rebrightening observed in that event (at a single frequency and time) may be due to a similar outflow with a comparable velocity and energy. Finally, we note that the energy and velocity of the delayed outflow in AT2018hyz are intermediate between those of past nonrelativistic TDEs (e.g., ASASSN-14li, AT2019dsg) and the relativistic TDE Sw J1644+57. We suggest that such delayed outflows may be common in TDEs. 
    more » « less
  3. Abstract We present the discovery of a second radio flare from the tidal disruption event (TDE) AT2020vwl via long-term monitoring radio observations. Late-time radio flares from TDEs are being discovered more commonly, with many TDEs showing radio emission thousands of days after the stellar disruption, but the mechanism that powers these late-time flares is uncertain. Here, we present radio spectral observations of the first and second radio flares observed from the TDE AT2020vwl. Through detailed radio spectral monitoring, we find evidence for two distinct outflow ejection episodes or a period of renewed energy injection into the preexisting outflow. We deduce that the second radio flare is powered by an outflow that is initially slower than the first flare but carries more energy and shows tentative indication of accelerating over time. Through modelling the long-term optical and UV emission from the TDE as arising from an accretion disk, we infer that the second radio outflow launch or energy injection episode occurred approximately at the time of the peak accretion rate. The fast decay of the second flare precludes environmental changes as an explanation, while the velocity of the outflow is at all times too low to be explained by an off-axis relativistic jet. Future observations that search for any link between the accretion disk properties and late-time radio flares from TDEs will aid understanding of what powers the radio outflows in TDEs and confirm if multiple outflow ejections or energy injection episodes are common. 
    more » « less
  4. Abstract The Dragonfly galaxy (MRC 0152-209), the most infrared-luminous radio galaxy at redshiftz∼ 2, is a merger system containing a powerful radio source and large displacements of gas. We present kiloparsec-resolution data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array of carbon monoxide (6−5), dust, and synchrotron continuum, combined with Keck integral field spectroscopy. We find that the Dragonfly consists of two galaxies with rotating disks that are in the early phase of merging. The radio jet originates from the northern galaxy and brightens when it hits the disk of the southern galaxy. The Dragonfly galaxy therefore likely appears as a powerful radio galaxy because its flux is boosted into the regime of high-zradio galaxies by the jet–disk interaction. We also find a molecular outflow of (1100 ± 550)Myr−1associated with the radio host galaxy, but not with the radio hot spot or southern galaxy, which is the galaxy that hosts the bulk of the star formation. Gravitational effects of the merger drive a slower and longer-lived mass displacement at a rate of (170 ± 40)Myr−1, but this tidal debris contains at least as much molecular gas mass as the much faster outflow, namelyMH2= (3 ± 1) × 109CO/0.8)M. This suggests that both the active-galactic-nucleus-driven outflow and mass transfer due to tidal effects are important in the evolution of the Dragonfly system. The Keck data show Lyαemission spread across 100 kpc, and Civand Heiiemission across 35 kpc, confirming the presence of a metal-rich and extended circumgalactic medium previously detected in CO(1–0). 
    more » « less
  5. Abstract We present radio observations of 23 optically discovered tidal disruption events (TDEs) on timescales of ∼500–3200 days postdiscovery. We detect nine new TDEs that did not have detectable radio emission at earlier times, indicating a late-time brightening after several hundred (and up to 2300) days; an additional seven TDEs exhibit radio emission whose origin is ambiguous or may be attributed to the host galaxy or an active galactic nucleus. We also report a new rising component in one TDE previously detected in the radio at ∼103days. While the radio emission in some of the detected TDEs peaked on a timescale ≈2–4 yr, over half of the sample still show rising emission. The range of luminosities for the sample is ∼1037–1039erg s−1, about 2 orders of magnitude below the radio luminosity of the relativistic TDE Sw J1644+57. Our data set indicates ∼40% of all optical TDEs are detected in radio hundreds to thousands of days after discovery, and that this is probably more common than early radio emission peaking at ∼102days. Using an equipartition analysis, we find evidence for a delayed launch of the radio-emitting outflows, with delay timescales of ∼500–2000 days, inferred velocities of ≈0.02–0.15c, and kinetic energies of ∼1047–1049erg. We rule out off-axis relativistic jets as a viable explanation for this population, and conclude delayed outflows are a more likely explanation, possibly from delayed disk formation. We conclude late radio emission marks a fairly ubiquitous but heretofore overlooked phase of TDE evolution. 
    more » « less