skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 25, 2026

Title: Improving Medium Range Severe Weather Prediction through Transformer Post-processing of AI Weather Forecasts
Abstract Improving the skill of medium-range (3–8 day) severe weather prediction is crucial for mitigating societal impacts. This study introduces a novel approach leveraging decoder-only transformer networks to post-process AI-based weather forecasts, specifically from the Pangu-Weather model, for improved severe weather guidance. Unlike traditional post-processing methods that use a dense neural network to predict the probability of severe weather using discrete forecast samples, our method treats forecast lead times as sequential “tokens”, enabling the transformer to learn complex temporal relationships within the evolving atmospheric state. We compare this approach against post-processing of the Global Forecast System (GFS) using both a traditional dense neural network and our transformer, as well as configurations that exclude convective parameters to fairly evaluate the impact of using the Pangu-Weather AI model. Results demonstrate that the transformer-based post-processing significantly enhances forecast skill compared to dense neural networks. Furthermore, AI-driven forecasts, particularly Pangu-Weather initialized from high resolution analysis, exhibit superior performance to GFS in the medium-range, even without explicit convective parameters. Our approach offers improved accuracy, and reliability, which also provides interpretability through feature attribution analysis, advancing medium-range severe weather prediction capabilities.  more » « less
Award ID(s):
2209699
PAR ID:
10653790
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
ISSN:
2769-7525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of deep learning (DL) weather forecasting models has made rapid progress and achieved comparable or better skill than traditional Numerical Weather prediction (NWP) models, which are generally computationally intensive. However, applications of these DL models have yet to be fully explored, including for severe convective events. We evaluate the DL model Pangu‐Weather in forecasting tornadic environments with one‐day lead times using convective available potential energy (CAPE), 0–6 bulk wind difference (BWD6), and 0–3 km storm‐relative helicity (SRH3). We also compare its performance to the National Centers for Environmental Prediction (NCEP)'s Global Forecast System (GFS), a traditional NWP model. Pangu‐Weather generally outperforms GFS in predicting BWD6 and SRH3 at the closest grid point and hour of the storm report. However, Pangu‐Weather tends to underpredict the maximum values of all convective parameters in the 1–2 hr before the storm across the surrounding grid points compared to the GFS. 
    more » « less
  2. Abstract An ensemble postprocessing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to postprocess convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1–24-h forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier skill score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the intervariable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to postprocess CAM output using neural networks that can be applied to severe weather prediction. Significance StatementWe use a new machine learning (ML) technique to generate probabilistic forecasts of convective weather hazards, such as tornadoes and hailstorms, with the output from high-resolution numerical weather model forecasts. The new ML system generates an ensemble of synthetic forecast fields from a single forecast, which are then used to train ML models for convective hazard prediction. Using this ML-generated ensemble for training leads to improvements of 10%–20% in severe weather forecast skills compared to using other ML algorithms that use only output from the single forecast. This work is unique in that it explores the use of ML methods for producing synthetic forecasts of convective storm events and using these to train ML systems for high-impact convective weather prediction. 
    more » « less
  3. Abstract Pure artificial intelligence (AI)-based weather prediction (AIWP) models have made waves within the scientific community and the media, claiming superior performance to numerical weather prediction (NWP) models. However, these models often lack impactful output variables such as precipitation. One exception is Google DeepMind’s GraphCast model, which became the first mainstream AIWP model to predict precipitation, but performed only limited verification. We present an analysis of the ECMWF’s Integrated Forecasting System (IFS)-initialized (GRAPIFS) and the NCEP’s Global Forecast System (GFS)-initialized (GRAPGFS) GraphCast precipitation forecasts over the contiguous United States and compare to results from the GFS and IFS models using 1) grid-based, 2) neighborhood, and 3) object-oriented metrics verified against the fifth major global reanalysis produced by ECMWF (ERA5) and the NCEP/Environmental Modeling Center (EMC) stage IV precipitation analysis datasets. We affirmed that GRAPGFSand GRAPIFSperform better than the GFS and IFS in terms of root-mean-square error and stable equitable errors in probability space, but the GFS and IFS precipitation distributions more closely align with the ERA5 and stage IV distributions. Equitable threat score also generally favored GraphCast, particularly for lower accumulation thresholds. Fractions skill score for increasing neighborhood sizes shows greater gains for the GFS and IFS than GraphCast, suggesting the NWP models may have a better handle on intensity but struggle with the location. Object-based verification for GraphCast found positive area biases at low accumulation thresholds and large negative biases at high accumulation thresholds. GRAPGFSsaw similar performance gains to GRAPIFSwhen compared to their NWP counterparts, but initializing with the less familiar GFS conditions appeared to lead to an increase in light precipitation. Significance StatementPure artificial intelligence (AI)-based weather prediction (AIWP) has exploded in popularity with promises of better performance and faster run times than numerical weather prediction (NWP) models. However, less attention has been paid to their capability to predict impactful, sensible weather like precipitation, precipitation type, or specific meteorological features. We seek to address this gap by comparing precipitation forecast performance by an AI model called GraphCast to the Global Forecast System (GFS) and the Integrated Forecasting System (IFS) NWP models. While GraphCast does perform better on many verification metrics, it has some limitations for intense precipitation forecasts. In particular, it less frequently predicts intense precipitation events than the GFS or IFS. Overall, this article emphasizes the promise of AIWP while at the same time stresses the need for robust verification by domain experts. 
    more » « less
  4. Abstract We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations. Significance StatementWe provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction. 
    more » « less
  5. Abstract Numerous artificial intelligence-based weather prediction (AIWP) models have emerged over the past 2 years, mostly in the private sector. There is an urgent need to evaluate these models from a meteorological perspective, but access to the output of these models is limited. We detail two new resources to facilitate access to AIWP model output data in the hope of accelerating the investigation of AIWP models by the meteorological community. First, a 3-yr (and growing) reforecast archive beginning in October 2020 containing twice daily 10-day forecasts forFourCastNet v2-small,Pangu-Weather, andGraphCast Operationalis now available via an Amazon Simple Storage Service (S3) bucket through NOAA’s Open Data Dissemination (NODD) program (https://noaa-oar-mlwp-data.s3.amazonaws.com/index.html). This reforecast archive was initialized with both the NOAA’s Global Forecast System (GFS) and ECMWF’s Integrated Forecasting System (IFS) initial conditions in the hope that users can begin to perform the feature-based verification of impactful meteorological phenomena. Second, real-time output for these three models is visualized on our web page (https://aiweather.cira.colostate.edu) along with output from the GFS and the IFS. This allows users to easily compare output between each AIWP model and traditional, physics-based models with the goal of familiarizing users with the characteristics of AIWP models and determine whether the output aligns with expectations, is physically consistent and reasonable, and/or is trustworthy. We view these two efforts as a first step toward evaluating whether these new AIWP tools have a place in forecast operations. 
    more » « less