skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 25, 2026

Title: Improved, annotated reference genome for the highly polyphagous moth Hyphantria cunea (Fall webworm)
Abstract Fall webworm (Hyphantria cunea) is a widespread, highly polyphagous moth in the family Erebidae, whose native range spans much of North America and invasive range includes Asia and Europe. The species uses over 600 plant species as a larval host, making it among the most generalized insect herbivores described. Its variable host use, wide range, and genetic diversity make fall webworm an attractive emerging model system for the study of diet breadth, but studies have been limited by the lack of a high-quality annotated reference genome. Here we report an annotated, chromosome-scale genome of much improved continuity and completeness over the previously available unannotated fall webworm reference genome. We used PacBioHiFi long reads and Omni-C proximity ligation sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus and third in the family, contains 321 scaffolds spanning 0.572 gigabases with a N50 of 14.6 Mb and BUSCO complete score of 99.1%. This genome will represent a valuable resource for research into the ecology, evolution, and genetics of dietary generalism and diet breadth in insect herbivores.  more » « less
Award ID(s):
2030691
PAR ID:
10653908
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ranger, Christopher (Ed.)
    Abstract For herbivorous insects with a broad diet breadth, host plant identity can influence larval development by either accelerating or delaying growth. For some species of Lepidoptera, the number of larval instars varies depending on the host plant’s identity. Fall webworm (Hyphantria cunea, Drury) is a polyphagous herbivore that feeds on over 450 host plants worldwide. Of the 2 morphotypes (red- and black-head) of fall webworm, the number of instars for the red-head fall webworms has not been characterized. Given its broad diet breadth, fall webworm developmental stages may vary with plant identity. We investigated whether host plant identity affected the number of instars observed during red-head fall webworm development. We measured the head capsules of over 6,000 fall webworm larvae reared on 6 different plants commonly eaten by fall webworms in Colorado. We modeled head capsule widths as Gaussian mixture models, with a Gaussian distribution that corresponded to each instar. We show that our red-head fall webworms varied in number of instars depending on the identity of their host plant upon which they fed. We found that red-head fall webworm exhibited 7 instars on 5 of the host plants and 8 instars on 1 host plant that we studied. Our results for the number of instars for red-head fall webworm are consistent with reports of the number of instars for black-head fall webworm. Our research provides insight into the influence of host plant identity on fall webworm development, which can be used to advance lab and field research of this species. 
    more » « less
  2. Abstract Most insect herbivores specialize on a few host plants; however, there are a minority of highly generalized species capable of feeding on hundreds of hosts. Generalism could emerge as a property of the species as a whole, while individuals would still exhibit greater specialization at more specific organizational levels. Yet, we lack studies with generalist insect herbivores directly testing this prediction. Here, we test if the highly generalized fall webworm (Hyphantria cunea) maintains its broad diet through specialization at the population, maternal genotype, or individual level. We reared two populations and multiple matrilines on either a static or rotating diet of four host plants. We found that both populations survived and pupated on all hosts, suggesting population‐level generalization. We found evidence for generalization at the genotype level, as maternal genotypes did not vary in performance rankings across host plants. Finally, we found generalism at the individual level, as individuals reared on a rotating diet had no difference or showed intermediate performance to those reared on static diets. Overall, we found support for the maintenance of generalism across all levels, suggesting that generalist species need not be locally specialized to maintain their extremely broad diet. 
    more » « less
  3. Most insect herbivores specialize on a few host plants; however, there are a minority of highly generalized species capable of feeding on hundreds of hosts. Generalism could emerge as a property of the species as a whole, while individuals would still exhibit greater specialization at more specific organizational levels. Yet, we lack studies with generalist insect herbivores directly testing this prediction. Here, we test if the highly generalized fall webworm (Hyphantria cunea) maintains its broad diet through specialization at the population, maternal genotype, or individual level. We reared two populations and multiple matrilines on either a static or rotating diet of four host plants. We found that both populations survived and pupated on all hosts, suggesting population-level generalization. We found evidence for generalization at the genotype level, as maternal genotypes did not vary in performance rankings across host plants. Finally, we found generalism at the individual level, as individuals reared on a rotating diet had no difference or showed intermediate performance to those reared on static diets. Overall, we found support for the maintenance of generalism across all levels, suggesting that generalist species need not be locally specialized to maintain their extremely broad diet. 
    more » « less
  4. Abstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore. 
    more » « less
  5. Abstract Parents can provide care to their offspring to increase their offspring's chance of survival. There are various types of parental care across insect taxa, one of which is maternal investment. Lipids, the most energy‐dense of macronutrients, are considered a good estimate of maternal investment in insects. However, it is not clear how different environments, such as host plants, can impact provisioning, especially for dietary generalists that feed on an array of plant species with varying quality. Using an extreme dietary generalist, fall webworm (FW,Hyphantria cunea), we investigated if females provision different amounts of lipids into their eggs depending on the diet they fed upon as larvae. We measured the lipid content of FW egg clusters from parents reared on seven host plant species of varying quality. We found that parental host plants influenced egg provisioning, such that provisioning depends on host plant but also increases most for parents reared on low‐quality diets. Additionally, we found that female parents with heavier pupal mass produced egg clusters with greater lipids per egg. Our results provide evidence that egg provisioning can depend on the parental environment and suggest that the use of low‐quality host plants by generalist herbivores may be partially overcome via maternal investment. 
    more » « less