Abstract While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
more »
« less
Characterizing the Interannual Variability of North Atlantic Subpolar Overturning
Abstract Variability of the Atlantic Meridional Overturning Circulation (MOC) has drawn extensive attention due to its impact on the global redistribution of heat and freshwater. Here we present the latest time series (2014–2022) of the Overturning in the Subpolar North Atlantic Program and characterize MOC interannual variability. We find that any single boundary current captures ∼30% of subpolar MOC interannual variability. However, to fully resolve MOC variability, a wide swath across the eastern subpolar basin is needed; in the Labrador Sea both boundaries are needed. Through a volume budget analysis for the subpolar basins' lower limbs, we estimate the magnitude of unresolved processes (e.g., diapycnal mixing) required to close the mean budget (∼2 Sv). We find that in the eastern subpolar basin surface‐forced transformation variability is linked to lower limb volume variability, which translates to MOC changes within the same year. In contrast, this linkage is weak in the Labrador Sea.
more »
« less
- PAR ID:
- 10653915
- Publisher / Repository:
- NSF
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 19
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.more » « less
-
To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.more » « less
-
Abstract A large part of the variability in the Atlantic meridional overturning circulation (AMOC) and thus uncertainty in its estimates on interannual time scales comes from atmospheric synoptic eddies and mesoscale processes. In this study, a suite of experiments with a 1/12° regional configuration of the MITgcm is performed where low-pass filtering is applied to surface wind forcing to investigate the impact of subsynoptic (<2 days) and synoptic (2–10 days) atmospheric processes on the ocean circulation. Changes in the wind magnitude and hence the wind energy input in the region have a significant effect on the strength of the overturning; once this is accounted for, the magnitude of the overturning in all sensitivity experiments is very similar to that of the control run. Synoptic and subsynoptic variability in atmospheric winds reduce the surface heat loss in the Labrador Sea, resulting in anomalous advection of warm and salty waters into the Irminger Sea and lower upper-ocean densities in the eastern subpolar North Atlantic. Other effects of high-frequency variability in surface winds on the AMOC are associated with changes in Ekman convergence in the midlatitudes. Synoptic and subsynoptic winds also impact the strength of the boundary currents and density structure in the subpolar North Atlantic. In the Labrador Sea, the overturning strength is more sensitive to the changes in density structure, whereas in the eastern subpolar North Atlantic, the role of density is comparable to that of the strength of the East Greenland Current. Significance StatementA key issue in understanding how well the Atlantic meridional overturning circulation is simulated in climate models is determining the impact of synoptic (2–10 days) and subsynoptic (shorter) wind variability on ocean circulation. We find that the greatest impact of wind changes on the strength of the overturning is through changes in energy input from winds to the ocean. Variations in winds have a more modest impact via changes in heat loss over the Labrador Sea, alongside changes in wind-driven surface currents. This study highlights the importance of accurately representing the density in the Labrador Sea, and both the strength and density structure of the East Greenland Current, for the correct representation of overturning circulation in climate models.more » « less
-
Abstract A recent study using the first 21 months of the OSNAP time series revealed that the export of dense waters in the eastern subpolar North Atlantic―as part of the Atlantic Meridional Overturning Circulation (MOC)―can be almost wholly attributed to surface‐forced water mass transformation (SFWMT) in the Irminger and Iceland basins, thus suggesting a minor role for other means of transformation, such as diapycnal mixing. To understand whether this result is valid over a period that exceeds the current observational record, we use four different ocean reanalysis products to investigate the relationship between surface buoyancy forcing and dense water production in this region. We also reexplore this relationship with the now available 6‐year OSNAP time series. Our analysis finds that although surface transformation in the eastern subpolar gyre dominates the production of deep waters, mixing processes downstream of the Greenland Scotland Ridge are also responsible for the production of waters carried within the AMOC's lower limb both in the observations and reanalyses. Further analysis of the reanalyses shows that SFWMT partly explains MOC interannual variability, the remaining portion can be attributed to basin storage and mixing. Compared to the observations, the reanalyses exhibit stronger MOC variance but comparable SFWMT variance on interannual timescales.more » « less
An official website of the United States government

