The ideal bacteriophages (phages) for the treatment of bacterial disease (phage therapy) would bypass bacterial evolution to phage resistance. However, this feature (called a hyper-aggression feature) has never been observed to our knowledge. Here, we microbiologically characterize, fractionate, genomically classify, and perform electron microscopy of the newly isolated Bacillus thuringiensis phage 0524phi7-1, which we find to have this hyper-aggression feature. Even visible bacterial colonies are cleared. Phage 0524phi7-1 also has three other features classified under hyper-aggression (four-feature-hyper-aggressive phage). (1) Phage 0524phi7-1 forms plaques that, although sometimes beginning as semi-turbid, eventually clear. (2) Clear plaques continue to enlarge for days. No phage-resistant bacteria are detected in cleared zones. (3) Plaques sometimes have smaller satellite plaques, even in gels so concentrated that the implied satellite-generating phage motion is not bacterial host generated. In addition, electron microscopy reveals that phage 0524phi7-1 (1) is a myophage with an isometric, 91 nm-head (diameter) and 210 nm-long contractile tail, and (2) undergoes extensive aggregation, which inhibits typical studies of phage physiology. The genome is linear double-stranded DNA, which, by sequencing, is 157.103 Kb long: family, Herelleviridae; genus, tsarbombavirus. The data suggest the hypothesis that phage 0524phi7-1 undergoes both swimming and hibernation. Techniques are implied for isolating better phages for phage therapy.
more »
« less
This content will become publicly available on December 1, 2026
Reply to Abedon, S.T. Dual-Receptor Recognition, Lysis Inhibition, Endolysin Release, and Reaction–Diffusion as Alternative Explanations. Comment on “Rojero et al. Bypassing Evolution of Bacterial Resistance to Phages: The Example of Hyper-Aggressive Phage 0524phi7-1. Int. J. Mol. Sci. 2025, 26, 2914”
In this manuscript, we isolate and characterize a phage that displays what we call anti-bacterial hyper-aggressive behavior. This behavior appears ideal for phage therapy of bacterial disease. It includes (1) formation of semi-turbid zones that subsequently clear, (2) formation of miniature satellite plaques, which probably constitute the foundation of the semi-turbid zones, (3) multi-day enlargement of both circular plaques and cleared semi-turbid zones, and (4) non-formation of phage-resistant host colonies. We emphasize the following key details in our response. (1) The semi-turbid zones are asymmetric and occupy an area much larger (2–10x) than the area of circular plaques formed on the same Petri plate (unlike semi-turbid plaques associated with other phenomena, such as lysis inhibition and lysogeny). (2) In the manuscript’s Figure 9d, we note that phage 0524phi7-1 destroys mature colonies of the host (unlike the behavior of other aggressive phages). (3) The asymmetry of semi-turbid zones is a point that we should have emphasized (because it implies non-diffusive, energy-requiring phage transport). (4) The input of energy for phage motion can be physical (to which we add some details for two physical effects); our mentioning of phage swimming is a hypothesis (that is, however, still viable).
more »
« less
- Award ID(s):
- 2409676
- PAR ID:
- 10653919
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 26
- Issue:
- 23
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 11468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
I. ABSTRACT Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores byBacillusand its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongstB. subtilisin spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts.more » « less
-
Spiroplasma virus 4 (SpV4) is a bacteriophage of the Microviridae, which packages circular ssDNA within non-enveloped T = 1 icosahedral capsids. It infects spiroplasmas, which are known pathogens of honeybees. Here, the structure of the SpV4 virion is determined using cryo-electron microscopy to a resolution of 2.5 Å. A striking feature of the SpV4 capsid is the mushroom-like protrusions at the 3-fold axes, which is common among all members of the subfamily Gokushovirinae. While the function of the protrusion is currently unknown, this feature varies widely in this subfamily and is therefore possibly an adaptation for host recognition. Furthermore, on the interior of the SpV4 capsid, the location of DNA-binding protein VP8 was identified and shown to have low structural conservation to the capsids of other viruses in the family. The structural characterization of SpV4 will aid future studies analyzing the virus–host interaction, to understand disease mechanisms at a molecular level. Furthermore, the structural comparisons in this study, including a low-resolution structure of the chlamydia phage 2, provide an overview of the structural repertoire of the viruses in this family that infect various bacterial hosts, which in turn infect a wide range of animals and plants.more » « less
-
The rapid discovery of new and diverse bacteriophages has driven the innovation of approaches aimed at detailing interactions with their bacterial hosts. Previous studies on receptor binding proteins (RBPs) mainly relied on their identification in silico and are based on similarities to well-characterized systems. Thus, novel phage RBPs unlike those currently annotated in genomic and proteomic databases remain largely undiscovered. In this study, we employed a screen to identify RBPs in flagellotropic Agrobacterium phage 7-7-1. Flagellotropic phages utilize bacterial flagella as receptors. The screen identified three candidate RBPs, Gp4, Gp102, and Gp44. Homology modelling predicted that Gp4 is a trimeric, tail associated protein with a central β-barrel, while the structure and function of Gp102 and Gp44 are less obvious. Studies with purified Gp41-247 confirmed its ability to bind and interact with host cells, highlighting the robustness of the RBP screen. We also discovered that Gp41-247 inhibits the growth of host cells in a motility and lipopolysaccharide (LPS) dependent fashion. Hence, our results suggest interactions between Gp41-247, rotating flagellar filaments and host glycans to inhibit host cell growth, which presents an impactful and intriguing focus for future studies.more » « less
-
Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage’s ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage’s “adsorptive host range.” The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage’s adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein’s targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage’s adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4’s long tail fiber binding tip (gp37) to evaluate and quantify gp37’s relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay’s ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.more » « less
An official website of the United States government
